Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2010, Vol. 30 Issue (04): 33-38    
技术与方法     
毕赤酵母高密度发酵表达血管紧张素转化酶C-结构域
徐珏,许传莲**,杜方尧
浙江理工大学 生命科学学院 蛋白质组与分子酶学实验室 杭州 310018
Optimization of Fermentation for ACE C- Domain from Pichia pastoris
XU Jue,XU Chuan-lian,DU Fang-yao
 全文: PDF(774 KB)   HTML
摘要:

血管紧张素转化酶(ACE, EC3.4.15.1)在调节血压方面具有重要作用。研究证实,ACE的C结构域(ACE-C)是使血管紧张素I (AngI)分解的主要活性位点。在5 L 发酵罐中, 对重组毕赤酵母表达ACE C-结构域的发酵工艺进行优化,探讨温度、pH、甲醇浓度等主要因素对重组蛋白表达量和酶活力的影响。结果表明,当工业培养基添加2%蛋白胨为氮源时, ACE C-结构域的降解现象得到了有效控制;采用诱导温度为26℃,pH5.5,甲醇含量为1.5%的表达条件,ACE C-结构域表达量和酶活力分别达到446 mg/L和38.2U/ml,比活力达到86U/mg,是Sigma公司ACE标准品比活力的2倍,为大规模制备ACE C-结构域蛋白,筛选专一性更强的ACE C-结构域抑制剂奠定了基础。

关键词: 毕赤酵母ACE C-结构域蛋白降解发酵    
Abstract:

 Angiotensin I-converting enzyme (ACE, EC3.4.15.1) plays an important role in regulating blood pressure. Now, ACE C-domain is identified to be the main site of angiotensin I cleavage in Vivo. In this study, the high expression recombinant Pichia pastoris was constructed and the screening tests was performed in 5 L bio- reactor to obtain the optimal values of several key fermentation parameters. Based on effects on the expression level, the optimal values for the temperature, the con- centrations of methanol and the pH were 26℃, 1.5% (V/V) and 5.5, respectively. Addition of 2%polypeptone to substrate would effectively repress proteolysis. The application of these optimal parameters successfully achieved high-throughput production: the cell density (OD600) of recombinant Pichia pastoris and the yield of crude target protein were respectively 397 mg/L and 446 mg/ L. After the purification with Ni-NTA columns, ACE C-domain was collected with a purity of 98.6%, and the specific activity of it was reached 86 U/mg, which is double fold than that of ACE purchased from Sigma. This provided a zymolytic condition to be used for ACE C-domain in industrial scale production, and provided a high specific activity enzyme for screening specific inhibitor to ACE C-domain.

Key words: Pichia pastoris    ACE C-domain    Proteolysis    Fermentation
收稿日期: 2010-01-08 出版日期: 2010-04-29
基金资助:

浙江省教育厅重点项目(Z200804057)、浙江省大学生科技创新推广项目(14080131380912)资助项目

通讯作者: 许传莲     E-mail: chuanlianxu@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
徐珏
许传莲
杜方尧

引用本文:

徐珏 许传莲 杜方尧. 毕赤酵母高密度发酵表达血管紧张素转化酶C-结构域[J]. 中国生物工程杂志, 2010, 30(04): 33-38.

XU Jue, HU Chuan-Lian, DU Fang-Yao. Optimization of Fermentation for ACE C- Domain from Pichia pastoris. China Biotechnology, 2010, 30(04): 33-38.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2010/V30/I04/33

[1] Erdos E G. Angiotensin I converting enzyme and the changes in our concepts through the years: Lewis K. Dahl memorial lecture. Hypertension,1990, 16(1): 363370. 
[2] Bhoola K D, Figueroa C D, Worthy K. Bioregulation of kinins: kallikreins, kininogens, and kininases. Pharmacol Rev, 1992,44(1):180. 
[3] Gavras H. Corcoran lecture: angiotensinconverting enzyme inhibition and the heart. Hypertension, 1994, 23: 813 818. 
[4] Linz W, Wiemer G, Gohlke P, et al. Contribution of kinins to the cardiovascular actions of angiotensin converting enzyme inhibitors. Pharmacol Rev, 1995, 47(1): 25 49. 
[5] Dzau V J. Theodore Cooper lecture: tissue angiotensin and pathobiology of vascular disease: a unifying hypothesis. Hypertension, 2001, 37: 10471052. 
[6] Soubrier F, AlhencGelas F, Hubert C, et al. Two putative active centers in human angiotensin Iconverting enzyme revealed by molecular cloning. Proc Natl Acad Sci U S A, 1988, 85(24): 9386 9390. 
[7] Wei L,AlhencGelas F,Corvol P,et al.The two homologousdomains of human angiotensin Iconverting enzyme are both catalytically active.J Biol Chem, 1991, 266: 90029008. 
[8] Dimitris G, Fabrice B, Bertrand C, et al. Roles of the two active sites of somatic angiotensinconverting enzyme in the cleavage of angiotensin I and bradykinin: Insights from selective inhibitors. Circ Res, 2003, 93: 148154. 
[9] Sebastien F, Hong D X, Christine H, et al. Angiotensinconverting enzyme Cterminal catalytic domain is the main site of angiotensin I cleavage in vivo. Hypertension, 2008, 51: 267274. 
[10] 赵钰岚,许传莲.血管紧张素转换酶的结构功能及相关抑制剂. 生物工程学报, 2008, 24(2): 171176. Zhao Y L, Xu C L. Chin J Biotech, 2008, 24(2): 171176. 
[11] 王芸, 华兆哲, 刘立明,等. 重组毕赤酵母高密度发酵生产碱性果胶酶的策略. 生物工程学报, 2003, 24(4): 635639. Wang Y, Hua Z Z, Liu L M, et al. Chin J Biotech, 2003, 24(4): 635639. 
[12] Zhao Y L, Zou W T, Xu C L. HPLC method screening angiotensin converting enzyme inhibitory compounds of flavonoids from Chrysanthemum.Chinese Journal of Pharmaceutical Analysis, 2008, 5: 674677. 
[13] 孙战胜,陈劲春.重组人血清白蛋白在毕赤酵母表达中的降解控制. 北京化工大学学报, 2004, 31(4): 911. Sun Z S,Chen J C. Journal of Beijing University of Chemical Technology, 2004, 31(4): 911. 
[14] 彭毅,杨希才.影响甲醇酵母中外源蛋白表达的因素.生物技术通报, 2000, 4: 3336. Peng Y,Yang X C. Biotechnology Information, 2000, 4: 3336. 
[15] 杨坤宇, 何芳萍, 李少伟等.重组毕赤酵母高密度发酵表达H5N1禽流感病毒糖蛋白. 生物工程学报,2009, 25(5): 773778. Yang K Y, He F P, Li S W, et al. Chin J Biotech, 2009, 25(5): 773778. 
[16] 周祥山, 范位民, 张元兴. 不同甲醇流加策略对重组毕赤酵母高密度发酵生产水蛭素的影响. 生物工程学报, 2002, 18(3): 348351. Zhou X S, Fan W M, Zhang Y X. Chin J Biotech, 2002, 18(3): 348351. 
[17] Lee J, Lee S Y, Park S, et al. Control of fedbatch fermentations. Biotechnol Adv, 1999, 17(1): 2948. 
[18] Ohashi R, Mochizuki E, Suzuki T. A miniscale mass production and separation system for secretory heterologous proteins by perfusion culture of recombinant Pichia pastoris using a shaken ceramic membrane flask. J Biosci Bioeng, 1999, 87(5): 655660.

[1] 高寅岭,张凤娇,赵贵众,张宏森,王风芹,宋安东. 衣康酸发酵研究进展[J]. 中国生物工程杂志, 2021, 41(5): 105-113.
[2] 陈中伟,郑璞,陈鹏程,吴丹. 耐热植酸酶突变体的筛选及性质研究 *[J]. 中国生物工程杂志, 2021, 41(2/3): 30-37.
[3] 陈鑫洁,钱芷兰,刘启,赵清,张元兴,蔡孟浩. 毕赤酵母底盘芳香族氨基酸合成途径改造生产肉桂酸及对香豆酸*[J]. 中国生物工程杂志, 2021, 41(10): 52-61.
[4] 石鹏程, 纪晓俊. 酵母系统表达人表皮生长因子研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 72-79.
[5] 杨娜,吴群,徐岩. 解淀粉芽孢杆菌合成surfactin的发酵策略优化 *[J]. 中国生物工程杂志, 2020, 40(7): 51-58.
[6] 王泽建,栗波,王萍,张琴,杭海峰,梁剑光,庄英萍. 葡萄糖和麦芽糖碳源底物对粪产碱杆菌合成凝胶多糖的胞内代谢流影响*[J]. 中国生物工程杂志, 2020, 40(5): 30-39.
[7] 王蒙,张全,高慧鹏,关浩,曹长海. 生物发酵法制备木糖醇的研究进展 *[J]. 中国生物工程杂志, 2020, 40(3): 144-153.
[8] 王宝石,谭凤玲,李林波,李志刚,孟丽,邱立友,张明霞. 生物处理策略改善麸皮酚类化合物的生物可及性*[J]. 中国生物工程杂志, 2020, 40(12): 88-94.
[9] 田园,李艳玲. 基于重组毕赤酵母的fusaruside生物合成 *[J]. 中国生物工程杂志, 2019, 39(7): 8-14.
[10] 彭强强,刘启,徐名强,张元兴,蔡孟浩. 新型重组毕赤酵母产人胰岛素前体的表达工艺研究 *[J]. 中国生物工程杂志, 2019, 39(7): 48-55.
[11] 王鑫淼,张康,陈晟,吴敬. 嗜热网球菌纤维二糖差向异构酶在枯草芽孢杆菌中的表达及发酵优化 *[J]. 中国生物工程杂志, 2019, 39(7): 24-31.
[12] 严建,贾禄强,丁健,史仲平. 甲醇周期诱导控制强化毕赤酵母生产猪α干扰素 *[J]. 中国生物工程杂志, 2019, 39(6): 32-40.
[13] 姚银,闵琪,熊海容,张莉. 木聚糖酶和甘露聚糖酶在毕赤酵母中的共表达及产酶分析 *[J]. 中国生物工程杂志, 2019, 39(3): 37-45.
[14] 张文玉,魏东升,钱江潮. 共表达PDI1MDH1HAC1基因对重组毕赤酵母分泌表达葡糖氧化酶的影响 *[J]. 中国生物工程杂志, 2019, 39(10): 24-33.
[15] 陈子晗,周海胜,尹新坚,吴坚平,杨立荣. Amphibacillus xylanus谷氨酸脱氢酶基因工程菌培养条件优化 *[J]. 中国生物工程杂志, 2019, 39(10): 58-66.