Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2013, Vol. 33 Issue (1): 60-66    
技术与方法     
用生物传感器方法测定正常小鼠肝脏中miR-21活性
田文洪1, 胡键阳2, 董小岩3, 李明皓4, 吴小兵5
1. 吉林大学生命科学学院 长春 130012;
2. 重庆医科大学附属儿童医院 重庆 400014;
3. 北京五加和分子医学研究所有限公司 北京 100176;
4. 宁夏回族自治区人民医院 银川 750001;
5. 北京亦庄国际生物医药投资管理有限公司 北京 101111
Detection of miR-21 Activity in Normal Mouse Liver Using Biosensors
TIAN Wen-hong1, HU Jian-yang2, DONG Xiao-yan3, LI Ming-hao4, WU Xiao-bing5
1. School of Life Science, Jilin University, Changchun 130012, China;
2. The Children’s Hospital of Chongqing Medical University, Chongqing 400000, China;
3. Beijing FivePlus Molecular Medicine Institute, Beijing 100176, China;
4. People Hospital, the Ningxia Hui Autonomous Region, Yinchuan 750001, China;
5. Beijing Yizhuang International Biomedical Investment & Management Co. Ltd., Beijing 101111, China
 全文: PDF(813 KB)   HTML
摘要: 目的:建立生物传感器检测小鼠肝脏中microRNA (miRNA)活性的方法,测定miR-21在正常小鼠肝脏中的活性。方法:首先,分子克隆方法构建检测miRNA活性的通用型质粒传感器Dsensor。将各种miRNA的互补序列插入Dsensor中构建成相应miRNA活性检测传感器。用水动力法将检测miR-21的Dsensor注射至正常小鼠体内,以miR-122 Dsensor为阳性对照,miR-206 Dsensor为阴性对照,以不插入任何miRNA互补序列的Dsensor为空白对照。不同时间点尾静脉采血测定Gluc表达,处死小鼠测定肝脏中Fluc表达,比较计算得出miRNA活性。最后,用QRT-PCR法测定小鼠肝脏组织中miR-21、miR-122和miR-206表达水平。结果:用RIF(Relative inhibiting fold)值表示miRNA活性,miR-21、miR-122和miR-206活性分别为80.03±21.25,29.90±5.90和0.92±0.29,表明小鼠正常肝脏中miR-21的负调控活性明显高于miR-122。然而,QRT-PCR法测定结果显示,miR-21的表达水平明显低于miR-122,而miR-206几乎没有表达。从miR-21与miR-122的活性与表达水平比较发现,miR-21的表达水平并没有真实反映其活性。结论:成功建立了一种小鼠肝脏中miRNA活性检测方法;首次发现小鼠正常肝脏中miR-21活性水平比miR-122更高,而表达水平却明显低于miR-122。提示miR-21对于维持肝脏的正常生理功能的重要作用,值得进一步研究其调控的靶基因和机理。
关键词: miRNAmiR-21miR-21活性肝脏    
Abstract: Biosensors were developed to detect miRNA activity in the liver of mouse. And miR-21 activity was assayed in normal mouse liver. A plasmid DNA based miRNA sensor (Dsensor) was designed for detection of miRNA activity. Control Dsensor carrying no miRNA target and three miRNA Dsensors (miR-122, miR-206, and miR-21) with a perfect complementary target were constructed using molecular cloning method in this study. Then Control Dsensor was injected into mouse by hydrodynamic method through tail-vein and Fluc activity was assayed for different tissues to validate specific transduction into liver for hydrodynamic injection. Subsequently, with miR-122 Dsensor as positive control and miR-206 Dsensor as negative control, Control, miR-122, miR-206, and miR-21 Dsensors were separately hydrodynamic injected into normal mice. Blood was taken from the tail-vein and Gluc activity was assayed at different time points. 10 d later, mice were sacrificed and Fluc activity was assayed in the liver. Gluc activity for miRNA Dsensor was compared with that for Control Dsensor. The ratio of Gluc activity (G) to Fluc activity (F) (G/F) for each Dsensor was computed and compared at 10 d. The ratio of G/F value for Control Dsensor to that for miRNA Dsensor was further computed which was nominated as relative inhibiting fold (RIF) to indicate miRNA activity. Lastly miR-21, miR-122, and miR-206 expression levels were detected by QRT-PCR. Results demonstrated that Fluc was primarily expressed in liver and that Gluc activity for miR-122 and miR-21 Dsensor were less than that for Control Dsensor while Gluc activity for miR-206 was as much as that for Control Dsensor. G/F values were similar to Gluc activity. RIF values for miR-21, miR-122, and miR-206 were separately 80.03?21.25, 29.90?5.90, and 0.92?0.29, suggesting that miR-21 activity was higher than miR-122 activity while miR-206 activity was not detected in normal mouse liver. However, expression level of miR-21 was lower than that of miR-122 by QRT-PCR, indicating that miR-21 expression level did not authentically reflect its expression level. In conclusion, the method for detection of miRNA activity in mouse liver was successfully established and it was firstly found that miR-21 activity was higher than miR-122 while less expression of miR-21 compared with miR-122 in normal mouse liver, which indicated important functions of miR-21 for normal liver and provided a basis for further miR-21 research in mouse liver.
Key words: miRNA    miR-21    miR-21 activity    Liver
收稿日期: 2012-10-25 出版日期: 2013-01-25
ZTFLH:  Q52  
基金资助: 国家"863"计划资助项目(2012AA020810)
通讯作者: 吴小兵     E-mail: wxb@bybp.com.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
田文洪
胡键阳
董小岩
李明皓
吴小兵

引用本文:

田文洪, 胡键阳, 董小岩, 李明皓, 吴小兵. 用生物传感器方法测定正常小鼠肝脏中miR-21活性[J]. 中国生物工程杂志, 2013, 33(1): 60-66.

TIAN Wen-hong, HU Jian-yang, DONG Xiao-yan, LI Ming-hao, WU Xiao-bing. Detection of miR-21 Activity in Normal Mouse Liver Using Biosensors. China Biotechnology, 2013, 33(1): 60-66.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2013/V33/I1/60

[1] Bartel D P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 2004, 116(27): 281-297.
[2] Shivdasani R A. MicroRNAs: regulators of gene expression and cell differentiation. Blood, 2006, 108(12): 3646-3653.
[3] Brennecke J, Hipfner D R, Stark A, et al. bantam encodes a developmentally regulated microRNA that control cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell, 2003, 113(1): 25-36.
[4] Xu P, Guo M, Hay B A. MicroRNAs and the regulation of cell death. Trends Genet, 2004, 20(12): 617-624.
[5] Tian W, Dong X, Liu X, et al. High-throughput functional mircroRNAs profiling by recombinant AAV-based microRNA sensor arrays. PLoS ONE, 2012, 7(1): e29551.
[6] 田文洪,王刚,罗顺涛,等. 体外实时动态监测水动力注射分泌型荧光素酶基因的表达. 生物工程学报,2009,25(10):1552-1557. Tian W H, Wang G, Luo S T, et al. Real time ex vivo detection and dynamic monitoring of in vivo expression of secreted luciferase gene injected by hydrodynamic method. Chin J Biotech, 2009, 25(10):1552-1557.
[7] Andrianaivo F, Lecocq M, Wattiaux-De Coninck S, et al. Hydrodynamics-based transfection of the liver: entrance into hepatocytes of DNA that causes expression takes place very early after injection. J Gene Med, 2004, 6(8): 877-883.
[8] Suda T, Gao X, Stolz D B, et al. Structural impact of hydrodynamic injection on mouse liver. Gene Ther, 2007, 14(2): 129-137.
[9] Chang J, Nicolas E, Marks D, et al. miR-122, a mammalian liver-specific microRNA, is processed from hcr mRNA and may downregulate the high affinity cationic amino acid transporter CAT-1. RNA Biol, 2004, 1(2): 106-113.
[10] Lagos-Quintana M, Rauhut R, Yalcin A, et al. Identification of tissue-specific microRNAs from mouse. Curr Biol, 2002, 12(9): 735-739.
[11] Triger D R. Physiological functions of the liver. Br J Hosp Med, 1979, 22(5): 424, 429-430,432.
[12] Selcuklu S D, Donoghue M T, Spillane C. miR-21 as key regulator of oncogenic processes. Biochem Soc Trans, 2009, 37(Pt 4): 918-925.
[13] Ng R, Song G, Roll G R, et al. A microRNA-21 surge facilitates rapid cyclin D1 translation and cell cycle progression in mouse liver regeneration. J Clin Invest, 2012, 122(3): 1097-1108.
[14] 王刚,董小岩,胡键阳,等. 利用分泌型荧光素酶体外长期检测小鼠肝脏microRNA活性. 中国科学:生命科学,2011,41(4):273-280. Wang G, Dong X Y, Hu J Y, et al. Long-term ex vivo monitoring of in vivo microRNA activity in liver using a secreted luciferase sensor. Sci China Life Sci, 2011, 54(5): 418-425.
[15] Brown B D, Gentner B, Cantore A, et al. Endogenous microRNA can be broadly exploited to regulate transgene expression according to tissue lineage and differentiation state. Nat Biotechnol, 2007, 25(12): 1457-1467.
[16] Mullokandov G, Baccarini A, Ruzo A, et al. High-throughput assessment of microRNA activity and function using microRNA sensor and decoy libraries. Nat Methods, 2012, 9(8): 840-846.
[1] 唐德平,邢梦洁,宋文涛,姚慧慧,毛爱红. microRNA治疗在癌症及其他疾病中的研究进展*[J]. 中国生物工程杂志, 2021, 41(11): 64-73.
[2] 陈雪艳,张娜,陈娟,杨艳红,张巨峰. Hsa-miR-411-3P对胃癌细胞作用功能及相关分子机制的研究 *[J]. 中国生物工程杂志, 2020, 40(4): 1-9.
[3] 郭超婧,朱琼,张新,李磊,张令强. 去泛素化酶OTUB1肝脏特异性基因敲除小鼠模型的构建与表型分析 *[J]. 中国生物工程杂志, 2019, 39(5): 80-87.
[4] 郭义威,王松涛,崔卫刚. 研究miR-219下调TGFBR2影响ENDMT途径抑制急性心肌梗死[J]. 中国生物工程杂志, 2019, 39(4): 8-15.
[5] 汤志雄, 苟德明. miRNA调控成肌分化的研究进展[J]. 中国生物工程杂志, 2017, 37(10): 103-110.
[6] 陈敏, 陈慧, 包海, 黄鹏, 王延伟. 植物miRNA启动子研究进展[J]. 中国生物工程杂志, 2016, 36(5): 125-131.
[7] 宋琪玲, 施琼, 陈楚, 唐祖川, 刘红霞, 周一青, 张汝益, 严树涓, 翁亚光. MiR-21协同BMP9促进间充质干细胞C3H10T1/2成骨分化[J]. 中国生物工程杂志, 2016, 36(2): 22-29.
[8] 满善晴; 孔祥祯; 董小明; 陈慧; 詹轶群; 李长燕; 杨晓明. [J]. 中国生物工程杂志, 2015, 35(4): 30-41.
[9] 胡燕珍, 卫军营, 罗光明. 谷胱甘肽在肝脏疾病相关信号通路中的作用及研究进展[J]. 中国生物工程杂志, 2015, 35(10): 72-77.
[10] 满朝来, 杨美玲. 体液循环microRNA的研究进展[J]. 中国生物工程杂志, 2014, 34(2): 104-108.
[11] 李俊娥, 贾利鹃, 闫鹏程, 闫学青, 谢国云, 陈禹保. miRDOA:集数据存储与在线分析于一体的综合型microRNA数据库[J]. 中国生物工程杂志, 2014, 34(11): 1-8.
[12] 李虹仪, 习欠云, 张永亮. 调节猪TNF-α表达的miRNAs鉴定[J]. 中国生物工程杂志, 2014, 34(10): 35-40.
[13] 王佃亮. 组织工程的临床研究——组织工程连载之五[J]. 中国生物工程杂志, 2014, 34(10): 114-120.
[14] 李文博, 张伟峰, 陈胤伯, 王东阳, 张琛, 夏海滨. 携带不同数量增强子的嵌合型肝脏特异性启动子的构建及其体外实验研究[J]. 中国生物工程杂志, 2012, 32(01): 15-20.
[15] 周露, 董春娟, 刘进元. 人工microRNA干扰DREB亚族A-5组转录抑制子基因增强了拟南芥对低温和高盐胁迫的耐受性[J]. 中国生物工程杂志, 2011, 31(5): 34-41.