Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2012, Vol. 32 Issue (07): 79-83    
研究报告     
海洋环境来源的淀粉酶AmyP对生玉米 淀粉的降解特性
彭惠, 雷寅, 刘源涛, 汪颖
安徽大学生命科学学院 安徽省微生物与生物催化工程技术研究中心 合肥 230039
Degradation of Raw Corn Starch by an α-Amylase (AmyP) from Marine Environment
PENG Hui, LEI Yin, LIU Yuan-tao, WANG Ying
School of Life Sciences, Anhui University, Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei 230039, China
 全文: PDF(531 KB)   HTML
摘要: 来自海洋宏基因组文库的α-淀粉酶(AmyP)属于最新建立的糖苷水解酶亚家族GH13_37。AmyP是一个生淀粉降解酶,能有效降解玉米生淀粉。在最适反应条件pH 7.5和40℃下,生玉米淀粉的比活达到(39.6±1.4)U/mg。酶解反应动力学显示AmyP可以非常快速的降解生玉米淀粉。 对1%的生玉米淀粉降解仅需要30min;4%和8%的生玉米淀粉只需3h。DTT可以显著提高AmyP对生玉米淀粉的降解活性,1% DTT促使活性增加1倍。根据电镜观察和产物分析,认为AmyP是以内腐蚀的模式降解生玉米淀粉颗粒,释放出葡萄糖、麦芽糖和麦芽三糖作为终产物。
关键词: α-淀粉酶生玉米淀粉糖苷酶家族GH13_37酶解    
Abstract: The α-amylase (AmyP) from a marine metagenomic library belongs to the recently classified glycoside hydrolase subfamily GH13_37. AmyP is raw starch degrading enzyme, exhibiting a remarkable ability to digest raw corn starch. The specific activity of raw corn starch was reached (39.6 ± 1.4)U/mg under the optimum pH 7.5 and temperature 40℃. The hydrolysis curve showed that AmyP could hydrolyze raw corn starch at a very high speed. The final hydrolysis degrees were obtained in 30min for 1% raw corn starch and 3h for 4% and 8% concentration. The enzyme’s activity was greatly increased in the presence of DTT. 1% DTT led to a twofold-enhanced activity. The results of scanning electron microscopy and thin-layer chromatography show that AmyP attacks sites on raw corn starch granules with a mode of endo-corrosion, and releases glucose, maltose and maltotriose as end products.
Key words: α-Amylase    Raw corn starch    Glycoside hydrolase subfamily    GH13_37    Hydrolysis
收稿日期: 2012-05-05 出版日期: 2012-07-25
ZTFLH:  Q556  
基金资助: 安徽省自然科学基金(11040606M65);安徽省高等学校省级自然科学研究重点项目(KJ2012A017)资助项目
通讯作者: 彭惠     E-mail: pph0259@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
彭惠
雷寅
刘源涛
汪颖

引用本文:

彭惠, 雷寅, 刘源涛, 汪颖. 海洋环境来源的淀粉酶AmyP对生玉米 淀粉的降解特性[J]. 中国生物工程杂志, 2012, 32(07): 79-83.

PENG Hui, LEI Yin, LIU Yuan-tao, WANG Ying. Degradation of Raw Corn Starch by an α-Amylase (AmyP) from Marine Environment. China Biotechnology, 2012, 32(07): 79-83.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2012/V32/I07/79

[1] Jobling S. Improving starch for food and industrial applications. Curr Opin Plant Biol, 2004, 7:210-218.
[2] Robertson G H, Wong D W S, Lee C C, et al. Native or raw starch digestion: a key step in energy efficient biorefining of grain. J Agric Food Chem, 2006, 54:353-365.
[3] Sun H, Zhao P, Ge X, et al. Recent advances in microbial raw starch degrading enzymes. Appl Biochem Biotechnol, 2010, 160:988-1003.
[4] Vidilaseris K, Hidayat K, Retnoningrum D S, et al. Biochemical characterization of a raw starch degrading α-amylase from the Indonesian marine bacterium Bacillus sp. ALSHL3. Biologia (Bratisl.), 2009, 64: 1047-1052.
[5] Puspasari F, Nurachman Z, Noer A S, et al. Characteristics of raw starch degrading α-amylase from Bacillus aquimaris MKSC 6.2 associated with soft coral Sinularia sp. Starch-Strke, 2011, 63:461-467
[6] Liu Y, Lei Y, Zhang X C, et al. Identification and phylogenetic characterization of a new subfamily of α-amylase enzymes from marine microorganisms. Mar Biotechnol, 2012, 14:253-260.
[7] Miller G L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem, 1959, 32:426-428.
[8] Mitsuiki S, Mukae K, Sakai M, et al. Comparative characterization of raw starch hydrolyzing α-amylases from various Bacillus strains. Enzyme Microb Tech, 2005, 37:410-416.
[9] Tahir R, Ellis P R, Butterworth P J. The relation of physical properties of native starch granules to the kinetics of amylolysis catalysed by porcine pancreatic α-amylase. Carbohyd Polym, 2010, 81:57-62.
[10] Hamilton L M, Kelly C T, Fogarty W M. Raw starch degradation by the non-raw starch-adsorbing bacterial alpha amylase of Bacillus sp. IMD 434. Carbohyd Res, 1998, 314:251-257.
[11] Yun J, Kang S, Park S, et al. Characterization of a novel amylolytic enzyme encoded by a gene from a soil-derived metagenomic library. Appl Environ Microbiol, 2004, 70:7229-7235.
[12] Nagasaka Y, Kurosawa K, Yokota A, et al. Purification and properties of the raw-starch-digesting glucoamylases from Corticium rolfsii. Appl Microbiol Biotechnol, 1998, 50:323-330.
[13] Kong B W, Kim J I, Kim M J, et al. Porcine pancreatic α-amylase hydrolysis of native starch granules as a function of granule surface area. Biotechnol Prog, 2003, 19:1162-1166.
[14] Tawil G, Viks-Nielsen A, Rolland-Sabaté A, et al. In depth study of a new highly efficient raw starch hydrolyzing α-amylase from Rhizomucor sp. Biomacromolecules, 2011, 12:34-42.
[15] Tester R F, Qi X, Karkalas J. Hydrolysis of native starches with amylases. Anim Feed Sci Tech, 2006, 130:39-54.
[16] Helbert W, Schüilein M, Henrissat B. Electron microscopic investigation of the diffusion of Bacillus licheniformis α-amylase into corn starch granules. Int J Biol Macromol, 1996, 19:165-160.
[17] Ohdan K, Kuriki T, Kaneko H, et al. Characteristics of two forms of α-amylases and structural implication. Appl Environ Microbiol, 1999, 65:4652-4658.
[18] Demirkan E S, Mikami B, Adachi M, et al. α-Amylase from B. amyloliquefaciens: purification, characterization, raw starch degradation and expression in E. coli. Process Biochem, 2005, 40:2629-2636.
[19] Tanaka T, Ishimoto E, Shimomura Y, T et al. Purification and some properties of raw starch-binding amylase of Clostridium butyricum T-7 isolated from mesophilic methane sludge. Agri Biol Chem, 1987, 51:399-405.
[20] Ueda M, Asano T, Nakazawa M, et al. Purification and characterization of novel raw-starch-digesting and cold-adapted α-amylases from Eisenia foetida. Comp Biochem Phys B, 2008, 150:125-130.
[21] Tawil G, Viks-Nielsen A, Rolland-Sabaté A, et al. Hydrolysis of concentrated raw starch: a new very efficient α-amylase from Anoxybacillus flavothermus. Carbohyd Polym, 2012, 87:46-52.
[22] Boic N, Ruiz J, López-Santín J, et al. Production and properties of the highly efficient raw starch digesting α-amylase from a Bacillus licheniformis ATCC 9945a. Biochem Eng J, 2011, 53:203-209.
[1] 吴红丽, 薛勇, 刘健, 甘礼惠, 龙敏南. 乙酰木聚糖酯酶研究进展[J]. 中国生物工程杂志, 2016, 36(3): 102-110.
[2] 曹长海, 张全, 关浩, 王领民, 乔凯, 佟明友. 提高木质纤维素酶解糖化效率的研究进展[J]. 中国生物工程杂志, 2015, 35(8): 126-136.
[3] 贾梦蛟, 刘睿, 陆杰霖, 朱蕴菡, 王令充, 王欣之, 吴皓, 鲁明明. 具有ACE抑制活性的霞水母酶解肽制备条件优化[J]. 中国生物工程杂志, 2014, 34(3): 103-108.
[4] 武崇辉, 寇巍, 邵丽杰, 张欢, 曹焱鑫, 张大雷. 酸碱处理纯化玉米秸秆纤维素及还原糖酶解实验研究[J]. 中国生物工程杂志, 2013, 33(11): 86-91.
[5] 林颖, 李璞, 单敬轩, 陈晓静, 施慧莉, 霍克克. RIOK3促进了caspase-10对PAK2的酶解激活[J]. 中国生物工程杂志, 2012, 32(08): 1-8.
[6] 王前1,张贵锋2,刘涛2,刘永东2,马润宇1,苏志国2. 基于串联质谱的鱼皮明胶鉴别研究[J]. 中国生物工程杂志, 2009, 29(06): 101-107.
[7] 吴园涛,孙恢礼. 海洋贝类蛋白资源酶解利用研究进展[J]. 中国生物工程杂志, 2007, 27(9): 120-125.
[8] 崔琳,张贵锋,刘涛,闭静秀,马润宇,苏志国. 液相色谱/质谱联用法分析不同年龄鼠皮肤中I型、III型胶原蛋白相对含量[J]. 中国生物工程杂志, 2007, 27(4): 71-76.
[9] 孙爱梅, 张贵锋, 倪文, 苏志国. 胶原蛋白降解物高效液相色谱/质谱联用分析[J]. 中国生物工程杂志, 2005, 25(02): 66-72.
[10] 何海伦, 陈秀兰, 张玉忠, 周百成, 高培基. 海洋生物蛋白资源酶解利用研究进展[J]. 中国生物工程杂志, 2003, 23(9): 70-74.
[11] 戈苏国. 木质纤维素的微生物降解[J]. 中国生物工程杂志, 1989, 9(5): 41-45.