Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2012, Vol. 32 Issue (07): 73-78    
研究报告     
胞内氧化还原水平对嗜热厌氧乙醇菌 发酵代谢的影响
孙焕民, 过敏, 伊日布斯
昆明理工大学生命科学与技术学院 昆明 650500
Effects of Intracellular Redox Level on Fermentation Metabolism of Thermoanaerobacter ethanolicus
SUN Huan-min, GUO Min, IRBIS Cha-gan
Laboratory of Bio-conversion, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
 全文: PDF(678 KB)   HTML
摘要: 辅酶NADH/NAD+在细胞内氧化还原反应中起着重要的作用, 是细胞生长和能量代谢必不可少的辅因子。调节微生物胞内NADH/ NAD+的比率是定向改变微生物代谢,高效获得目标代谢产物的有效手段。嗜热厌氧乙醇菌 (Thermoanaerobacter ethanolicus)是高温厌氧菌中乙醇产量较高的代表性菌株,本文利用不同氧化还原态的碳源改变T. ethanolicus的胞内NADH/NAD+含量和比例,进而研究了其对细胞生长、代谢产物分布的影响。以不同比例的葡萄糖/甘露醇作为混合碳源发酵,胞内氧化还原水平、细胞的生长特性、代谢产物都发生了不同程度的差异,以葡萄糖作为唯一碳源进行培养时,T. ethanolicus生长良好,乙醇产量为0.79g/L,但胞内NADH/ NAD+比值和乙醇/乙酸的比值都比较低,分别为0.47和4.82;随着葡萄糖在混合碳源中比例的下降,NADH/ NAD+比值增高,发酵产物中乙醇/乙酸比值也呈现上升的趋势。而以甘露醇作为唯一碳源时,发酵产物中乙醇浓度为0.389g/L,NADH/ NAD+比值和乙醇/乙酸的比值分别为1.04和16.0。
关键词: NADH/NAD+高温厌氧乙醇菌乙醇发酵    
Abstract: Coenzyme NADH/NAD+ plays an important role in intracellular oxidation-reduction reactions, and is a necessary cofactor for cell growth and energy metabolism. Regulating the intracellular NADH/NAD+ ratio of microorganisms is an effective means to alter microbial metabolic pathway directionally and obtain the target metabolic products efficiently. Thermoanaerobacter ethanolicus is a representative thermophilic anaerobic and ethanologenic bacteria. This study altered intracellular NADH/NAD+ ratio using carbon sources at different redox status. Then its effect on cell growth and distribution of metabolic products was studied. When glucose and mannitol at different ratios were used as the substrate for fermentation, variations occurred with respect to intracellular redox level, growth characteristics of cells and metabolic products. When glucose was used as the only carbon source, T. ethanolicus grew well, and the ethanol production was 0.79g/L. However, both of the intracellular NADH/NAD+ ratio and ethanol/acetic acid ratio were low, being 0.474 and 4.82 respectively. As the ratio of glucose in the mixed carbon source decreased, the NADH/NAD+ ratio increased, and the ethanol/acetic acid ratio in the fermentation products also showed an increasing trend. When mannitol was used as the only carbon source, the ethanol concentration in the fermentation products was 0.389g/L, and the NADH/NAD+ ratio and ethanol/acetic acid ratio were 1.04 and 16.0 respectively.
Key words: NADH/NAD+    Thermoanaerobacter ethanolicus    Ethanol fermentation
收稿日期: 2012-05-11 出版日期: 2012-07-25
ZTFLH:  Q815  
基金资助: 云南省自然科学基金资助项目(KKS0200926026)
通讯作者: 伊日布斯     E-mail: irbisc@gmail.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
孙焕民
过敏
伊日布斯

引用本文:

孙焕民, 过敏, 伊日布斯. 胞内氧化还原水平对嗜热厌氧乙醇菌 发酵代谢的影响[J]. 中国生物工程杂志, 2012, 32(07): 73-78.

SUN Huan-min, GUO Min, IRBIS Cha-gan. Effects of Intracellular Redox Level on Fermentation Metabolism of Thermoanaerobacter ethanolicus. China Biotechnology, 2012, 32(07): 73-78.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2012/V32/I07/73

[1] Grazina M, Silva F, Januario C, et al. Parkinson's disease and mitochondrial DNA NADH dehydrogenase subunit 1 nucleotides 3337-3340: study in a population from the central region of Portugal (Coimbra). Eur Neurol, 2003, 50(1): 60-61.
[2] St Clair N, Wang Y F, Margolin A L. Cofactor-Bound Cross-Linked Enzyme Crystals (CLEC) of Alcohol Dehydrogenase. Angew Chem Int Ed Engl, 2000, 39(2): 380-383.
[3] Leonardo M R, Cunningham P R, Clark D P. Anaerobic regulation of the adhE gene, encoding the fermentative alcohol dehydrogenase of Escherichia coli. J Bacteriol, 1993, 175(3): 870-878.
[4] de Graef M R, Alexeeva S, Snoep J L, et al. The steady-state internal redox state (NADH/NAD) reflects the external redox state and is correlated with catabolic adaptation in Escherichia coli. J Bacteriol, 1999, 181(8): 2351-2357.
[5] Leonardo M R, Dailly Y, Clark D P. Role of NAD in regulating the adhE gene of Escherichia coli. J Bacteriol, 1996, 178(20): 6013-6018.
[6] Alam K Y, Clark D P. Anaerobic fermentation balance of Escherichia coli as observed by in vivo nuclear magnetic resonance spectroscopy. J Bacteriol, 1989, 171(11): 6213-6217.
[7] Girbal L,Soucaille P. Regulation of Clostridium acetobutylicum metabolism as revealed by mid-substrate steady state continous cultures:role of NADH/ NAD+ ratio and ATP pool.Bacteriol,1994,176(21):6433-6438.
[8] Vane L M, Alvarez F R. Membrane-assisted vapor stripping: energy efficient hybrid distillation-vapor permeation process for alcohol-water separation. Journal of Chemical Technology and Biotechnology, 2008, 83(9): 1275-1287.
[9] Sommer P, Georgieva T, Ahring B K. Potential for using thermophilic anaerobic bacteria for bioethanol production from hemicellulose. Biochem Soc Trans, 2004, 32(2): 283-289.
[10] Zaldivar J, Nielsen J, Olsson L. Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration. Appl Microbiol Biotechnol, 2001, 56(1-2): 17-34.
[11] Peng J J, Zhou Q, Jing Q Q, et al. The mechanism for regulating ethanol fermentation by redox levels in Thermoanaerobacter ethanolicus.Metabolic Engineering,2011,13(2):186-193.
[12] Kataoka M, Rohani L P, Yamamoto K, et al. Enzymatic production of ethyl (R)-4-chloro-3-hydroxybutanoate: asymmetric reduction of ethyl 4-chloro-3-oxobutanoate by an Escherichia coli transformant expressing the aldehyde reductase gene from yeast. Appl Microbiol Biotechnol, 1997, 48(6): 699-703.
[13] 王庆昭.高产琥珀酸大肠杆菌的代谢工程. 天津:天津大学,化工学院,2006. Wang Q Z. Metabolic engineering of Escherichia coli for improved succinic acid production. Tianjin:Tianjin University, Chemical Engineering Institute,2006.
[14] San K Y, Bennett, G N, Berrios-Rivera S J, et al. Metabolic engineering through cofactor manipulation and its effects on metabolic flux redistribution in Escherichia coli. Metab Eng, 2002, 4 (2): 182-192.
[15] Lin H, Bennett G N, San K Y. Effect of carbon sources differing in oxidation state and transport route on succinate production in metabolically engineered Escherichia coli. J Ind Microbiol Biotechnol, 2005,32 (3): 87-93.
[1] 马力, 吴昊, 王斌斌, 乔建军, 朱宏吉. 转录调控因子Rex的功能及调节机制研究进展[J]. 中国生物工程杂志, 2016, 36(10): 94-100.
[2] 申冬玲, 尚淑梅, 李卫娜, 严金平, 伊日布斯. ack基因敲除对Thermoanaerobacterium calidifontis Rx1发酵代谢的影响[J]. 中国生物工程杂志, 2015, 35(7): 37-44.
[3] 高教琪, 韩锡铜, 孔亮, 袁文杰, 王娜, 白凤武. 马克斯克鲁维酵母在工业生物技术中的应用[J]. 中国生物工程杂志, 2014, 34(2): 109-117.
[4] 孜力汗, 刘晨光, 王娜, 袁文杰, 白凤武. 多种通气策略下的高浓度乙醇生产[J]. 中国生物工程杂志, 2013, 33(6): 86-92.
[5] 徐勇, 沈翀, 邱兴天, 蔡鹏, 黄敏仁, 余世袁. 热带假丝酵母木糖乙醇发酵相关基因的筛选与分析[J]. 中国生物工程杂志, 2012, 32(11): 61-69.
[6] 徐勇, 沈翀, 邱兴天, 蔡鹏, 黄敏仁, 余世袁. 热带假丝酵母木糖乙醇发酵相关基因的筛选与分析[J]. 中国生物工程杂志, 2012, 32(11): 61-69.
[7] 张晓阳, 杜风光, 池小琴, 王品美, 郑道琼, 吴雪昌. 代谢工程与全基因组重组构建酿酒酵母抗逆高产乙醇菌株[J]. 中国生物工程杂志, 2011, 31(7): 91-97.
[8] 李洁,李凡,刘晨光,任剑刚,赵心清,葛旭萌,白凤武. 高效发酵木糖生产乙醇酵母菌株的构建[J]. 中国生物工程杂志, 2009, 29(06): 74-78.
[9] 张震元. 日本育成葡糖淀粉酶重组酵母菌[J]. 中国生物工程杂志, 1987, 7(6): 63-64.