Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2012, Vol. 32 Issue (07): 66-72    
研究报告     
响应面法优化木薯淀粉发酵生产单细胞油脂工艺
艾佐佐1, 颜日明1, 袁锦云1, 张志斌1, 朱笃1,2
1. 江西师范大学生命科学学院 江西省亚热带植物资源保护与利用重点实验室 南昌 330022;
2. 宜春学院 江西省天然药物活性成分研究重点实验室 宜春 336000
Optimization of Single Cell Oil Produced from Cassava Starch by Response Surface Methodology
AI Zuo-zuo1, YAN Ri-ming1, YUAN Jin-yun1, ZHANG Zhi-bin1, ZHU Du1,2
1. Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, China;
2. Key Laboratory for Research on Active Ingredients in Natural Medicine of Jiangxi Province, Yichun University, Yichun 336000, China
 全文: PDF(1264 KB)   HTML
摘要: 采用响应面分析法对发酵性丝孢酵母菌株以木薯淀粉水解液为原料合成微生物油脂的培养条件进行优化。首先利用Plackett-Burman试验设计确定影响油脂产量的主要因素,在此基础上再利用Box-Behnken试验设计及响应面分析法对其进行条件优化。结果表明,发酵温度、C/N、pH对油脂产量具有显著影响,产油脂的最佳发酵条件为:发酵温度 28.78℃、C/N 126.18、pH 6.69,油脂产量达到14.88g/L,比优化前提高了28.6%。同时,气相色谱分析表明,微生物油脂脂肪酸组成成分主要包括棕榈酸、硬脂酸、油酸、亚油酸酯等,是优良的生物柴油制备原料。
关键词: 木薯淀粉响应面分析法单细胞油脂条件优化发酵性丝孢酵母    
Abstract: Response surface methodology was applied to optimize the Trichosporon fermentans fermentation conditions for microbial lipids produced from hydrolysate of cassava starch. The Plackeet-Burman design was adopted to sort the important factors influencing the lipids yield, and the conditions of lipids production was further optimized by using Box-Behnken design and response surface methodology. The results showed that the temperature, C/N and pH could influence on the lipid yield significantly. The optimized conditions for lipid production were temperature of 28.79℃, C/N of 126.18 and pH of 6.69, and the lipids yield of 14.88g/L which was 28.6% higher than control. Moreover, gas chromatography analysis revealed that the microbial lipid from Trichosporon fermentans mainly included palmitic acid, stearic acid, oleic acid and linoleic acid and it was suggested to be used as an excellent feedstock for biodiesel production.
Key words: Cassava starch    Response surface methodology    Microbial lipids    Condition optimization    Trichosporon fermentans
收稿日期: 2012-03-06 出版日期: 2012-07-25
ZTFLH:  Q815  
基金资助: 国家"863"计划(2012AA021205);江西省主要学科学术与技术带头人培养计划(060002)资助项目
通讯作者: 朱笃     E-mail: zhudu12@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
艾佐佐
颜日明
袁锦云
张志斌
朱笃

引用本文:

艾佐佐, 颜日明, 袁锦云, 张志斌, 朱笃. 响应面法优化木薯淀粉发酵生产单细胞油脂工艺[J]. 中国生物工程杂志, 2012, 32(07): 66-72.

AI Zuo-zuo, YAN Ri-ming, YUAN Jin-yun, ZHANG Zhi-bin, ZHU Du. Optimization of Single Cell Oil Produced from Cassava Starch by Response Surface Methodology. China Biotechnology, 2012, 32(07): 66-72.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2012/V32/I07/66

[1] Subramaniam R, Dufreche S, Zappi M, et al. Microbial lipids from renewable resources: production and characterization. Journal of Industrial Microbiology & Biotechnology, 2010, 37(12):1271-1287.
[2] Li Q, Du W, Liu D H. Perspectives of microbial oils for biodiesel production. Applied Microbiol Biotechnology, 2008, 80(5):749-756.
[3] 方佳, 濮文辉, 张慧坚. 国内外木薯产业发展近况. 中国农学通报, 2010, 26(16):353-361. Fang J, Pu W H, Zhang H J. The development status of cassava industry at home and abroad. Chinese Agricultural Science Bulletin, 2010, 26(16): 353-361.
[4] Jansson C, Westerbergh A, Zhang J, et al. Cassava, a potential biofuel crop in (the) People’s Republic of China. Appl Energ, 2009, 86:S95-S99.
[5] Wei A L, Zhang X W, Wu Q Y, et al. Effects of cassava starch hydrolysate on cell growth and lipid accumulation of heterotrophic microalgae Chlorella protothecoides. J Ind Microbiol Biotechnol, 2009, 36:1383-1389.
[6] Lu Y, Ding Y, Wu Q Y. Simultaneous saccharification of cassava starch and fermentation of algae for biodiesel production. J Appl Phycol, 2011, 23(1):115-121.
[7] 杨艳婧, 王冰芳, 廖晓霞, 等. 木薯淀粉水解液对小球藻生物量和油脂含量的影响. 现代食品科技, 2009, 25(11):1275-1278. Yang Y J, Wang B F, Liao X X, et al. Effect of cassava starch hydrolysate on cell growth and lipid accumulation of heterophic microalgae Chlorella protothecoides. Modern Food Science and Technology, 2009, 25(11):1275-1278.
[8] Li M, Liu G L, Chi Z, et al. Single cell oil production from hydrolysate of cassava starch by marine-derived yeast Rhodotorula mucilaginosa TJY15a. Biomass and Bioenergy, 2010, 34:101-107.
[9] 袁锦云, 艾佐佐, 朱笃, 等. 皮状丝孢酵母B3利用木薯淀粉发酵生产微生物油脂. 生物工程学报, 2011, 27(3):453-460. Yuan J Y, Ai Z Z, Zhu D, et al. Microbial oil production by Trichosporon cutaneum B3 using cassava starch. Chinese Journal of Biotechnology, 2011, 27(3):453-460.
[10] 李植峰, 张玲, 沈晓京, 等. 四种真菌油脂提取方法的比较研究. 微生物学通报, 2001, 28(6):72-75. Li Z F, Zhang Listen X J, et al. A comparative study on four methods of fungi lipid extraction. Microbiology, 2001, 28(6):72-75.
[11] GB/T 17377-2008, 动植物油脂脂肪酸甲酯的气相色谱分析. GB/T 17377-2008, Animal and vegetable fats and oils—Analysis by gas chromatography of methyl esters of fatty acids.
[12] 张巧艳, 钱俊青. 响应面法优化黄杆菌突变株产脂肪酶摇瓶发酵条件. 浙江工业大学报, 2009, 37(2): 156-160. Zhang Q Y, Qian J Q. Optimization of lipase production conditions by Flavobacterium sp. YY25-H0.5 using response surface methodology. Zhengjiang University of Technology, 2009, 37(2):156-160.
[13] Li C, Bai Z L. Optimization of a cultural medium for bacteriocin production by Lactococcus lactis using response surface methodology. Journal of Biotechnology, 2002, 93:27-34.
[14] Box G E P, Behnken D W. Some new three level designs for the study of quantitative variables. Teclmometrics, 1960, 2:455-475.
[15] Li Y G, Xu L, Huang Y M, et al. Microalgal biodiesel in China: Opportunities and challenges. Applied Energy, 2011, 88(10): 3432-3437.
[16] Zhu L Y, Zong M H, Wu H. Efficient lipid production with Trichosporon fermentans and its use for biodiesel preparation. Bioresource Technology, 2008, 99(16):7881-7885.
[17] Huang C, Zong M H, Wu H, et al. Microbial oil production from rice straw hydrolysate by Trichosporon fermentans. Bioresource Technology, 2009, 100(19):4535-4538.
[18] Xue F Y, Miao J X, Zhang X, et al. Studies on lipid production by Rhodotorula glutinis fermentation using monosodium glutamate wastewater as culture medium. Bioresource Technology, 2008, 99(13):5923-5927.
[19] Zhao X, Wu S G, Hu C M, et al. Lipid production from Jerusalem artichoke by Rhodosporidium toruloides Y4. Journal of Industrial Microbiology and Biotechnology, 2010, 37: 581-585.
[20] Zhao C H, Zhang T, Li M, et al. Single cell production from hydrolysates of inulin and extract of tubers of Jerusalem artichoke by Rhodotorula mucilaginosa TJY15a. Process Biochemistry, 2010, 45:1121-1126.
[1] 杨隆兵,国果,马慧玲,李妍,赵欣宇,苏佩佩,张勇. 家蝇抗菌肽AMPs17蛋白原核表达条件的优化及其抗真菌活性检测 *[J]. 中国生物工程杂志, 2019, 39(4): 24-31.
[2] 王越,李江华,堵国成,刘龙. L-氨基酸脱氨酶的分子改造及其用于全细胞催化法生产α-酮戊二酸条件的优化 *[J]. 中国生物工程杂志, 2019, 39(3): 56-64.
[3] 王云龙, 赵二霞, 李玉林. Thymidine Kinase 1(TK1)重组蛋白的表达、纯化及鉴定[J]. 中国生物工程杂志, 2017, 37(9): 15-22.
[4] 张旭辉, 张红楠, 李勇, 汪文强. 抑制西瓜蔓枯病菌的生防真菌筛选、鉴定及发酵条件优化[J]. 中国生物工程杂志, 2017, 37(5): 76-86.
[5] 夏乾竣, 王飞, 李迅. 解脂耶罗维亚酵母产油脂的研究进展[J]. 中国生物工程杂志, 2017, 37(3): 99-105.
[6] 陈杰, 魏鸿刚, 罗远婵, 张道敬, 李淑兰, 田黎, 李元广. 海洋芽胞杆菌B-9987产新型抗菌环脂肽Marinhysin A的培养基优化[J]. 中国生物工程杂志, 2013, 33(1): 84-89.
[7] 陈洁梅, 徐聪聪, 常磊, 刘永萍, 缪冰旋. 响应面分析法优化豆粕固态发酵工艺生产大豆抗氧化肽的研究[J]. 中国生物工程杂志, 2012, 32(12): 59-65.
[8] 刘启刚, 代云见, 张勇侠, 王保成, 王明蓉. 抗IgE单链抗体在大肠杆菌中可溶性高效表达条件的研究[J]. 中国生物工程杂志, 2012, 32(11): 23-28.
[9] 刘启刚, 代云见, 张勇侠, 王保成, 王明蓉. 抗IgE单链抗体在大肠杆菌中可溶性高效表达条件的研究[J]. 中国生物工程杂志, 2012, 32(11): 23-28.
[10] 奉灵波, 周瑞芳, 赵辰龙, 陈桂光, 李杨瑞, 李楠. 利用甘蔗糖蜜酒精发酵液生产腐植酸的菌种鉴定及发酵条件研究[J]. 中国生物工程杂志, 2012, 32(10): 80-85.
[11] 王萍, 江木兰, 张银波, 万霞, 梁焯, 龚阳敏. 载有磷酸甘油激酶基因启动子的新表达载体的构建以及在发酵性丝孢酵母中启动外源基因的表达研究[J]. 中国生物工程杂志, 2012, 32(03): 39-46.
[12] 周露, 刘进元. 不同提取液提取水稻幼苗质外体蛋白效果的比较[J]. 中国生物工程杂志, 2011, 31(01): 51-55.
[13] 许丽丽, 阎光宇, 王全喜, 吴双秀. 转基因衣藻lba及对照藻产氢培养条件的优化[J]. 中国生物工程杂志, 2010, 30(11): 44-49.
[14] 崔堂兵 刘清香. 尖孢镰刀菌生产蒽醌色素的液体发酵条件研究[J]. 中国生物工程杂志, 2010, 30(09): 56-61.
[15] 阮文兵 陈必钦 陈素华 陈秉梅 许小平. 响应面分析法优化(R)-扁桃酸发酵培养基[J]. 中国生物工程杂志, 2010, 30(08): 112-117.