Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2012, Vol. 32 Issue (07): 43-48    
研究报告     
番茄红素β-环化酶基因的玉米转化及 后代遗传分析
霍培, 季静, 王罡, 关春峰, 金超
天津大学农业与生物工程学院 天津 300072
Transformation and Genetic Analysis of Maize with the Lycb
HUO Pei, JI Jing, WANG Gang, GUAN Chun-feng, JIN Chao
School of Agriculture and Bioengineering, Tianjin University, Tianjin 300072, China
 全文: PDF(820 KB)   HTML
摘要: 利用农杆菌介导法将番茄红素β-环化酶基因(Lycb)转入由玉米自交系天塔五号植株,分析基因在T0转化及后代的遗传情况,结果表明,在27株T0转基因植株中, PCR初步检测后8株呈阳性;将T1代转基因植株以株系为单位用200mg/L草铵膦抗性筛选后,收获抗性植株种子。T2代转基因植株进一步进行PCR、RT-PCR和田间草铵膦涂抹检测,结果表明,PCR、RT-PCR为阳性的6个株系植株均具有草铵膦抗性。选取6株阳性植株提取叶片总类胡萝卜素,经HPLC分析其β-胡萝卜素含量显著高于野生型,表明目的基因Lycb成功的转入玉米,并得到了稳定遗传。
关键词: 番茄红素β-环化酶基因Bar基因玉米遗传转化HPLC    
Abstract: Lycb gene was transformed into embryonic callus derived from Tianta Fifth inbred lines by Agrobacterium-mediated transformation, and the independent T0 transformants and their progenies genetics were analyzed. PCR analysis with 27 T0 transformed plants testified 8 positive plantlets. T1 plantlets were selected by 200 mg/L PPT and seeds of the resistance plants were harvested. T2 transgenic plants were analyzed using PCR, RT-PCR, and the results showed that the six positive lines detected were further confirmed to have PPT resistance. HPLC analysis showed the total beta carotene content from transformed leaves was significantly higher than that of the wild type. The results show that the Lycb gene was able to inherit in the T2 progeny, and transcribed and translated effectively.
Key words: Lycopene β-cyclase(Lycb)    Bar    Maize    Transformation    HPLC
收稿日期: 2012-03-12 出版日期: 2012-07-25
ZTFLH:  Q78  
基金资助: 国家转基因生物新品种培育科技重大专项资助项目(2009ZX08003-019B;2011ZX08003-005;2011ZX08004-001;2009ZX08010-013B)
通讯作者: 季静     E-mail: jijingtjdx@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
霍培
季静
王罡
关春峰
金超

引用本文:

霍培, 季静, 王罡, 关春峰, 金超. 番茄红素β-环化酶基因的玉米转化及 后代遗传分析[J]. 中国生物工程杂志, 2012, 32(07): 43-48.

HUO Pei, JI Jing, WANG Gang, GUAN Chun-feng, JIN Chao. Transformation and Genetic Analysis of Maize with the Lycb. China Biotechnology, 2012, 32(07): 43-48.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2012/V32/I07/43

[1] Fraser P D, Bramley P M. The biosynthesis and nutritional uses of carotenoids. Prog. Lipid Res., 2004, 43(3): 228-265.
[2] Giuliano G, Tavazza R, Diretto G, et al. Metabolic engineering of carotenoid biosynthesis in plants. Trends Biotechnol, 2008, 26(3): 139-145.
[3] Jiang S, Wang C X, Lan L, et al. Vitamin A deficiency aggravates iron deficiency by up regulating the expression of iron regulatory protein-2. Nutrition, 2012, 28(3): 281-287.
[4] Harjes C E, Rocheford T R, Bai L, et al. Natural genetic variation in lycopene epsilon cyclase tapped for maize biofortification. Science, 2008, 319(5861): 330-333.
[5] Amoussa-Hounkpatin W, Mouquet-Rivier C, Dossa R A M, el al. Contribution of plant-based sauces to the vitamin A intake of young children in Benin. Food Chem, 2012, 131(3): 948-955.
[6] Grimsley N, Hohn T, Davis J W, et al. Agrobacterium mediated delivery of infect ious maize streak virus into maize Plants. Nature, 1987, 325(7000): 177-179.
[7] Grimsley N, Ramos C, Hein T, et al. Meristematic tissues of maize Plant sre most susceptible to agromfection with maize streak virus. Bio Technology, 1988, 6(2): 185-189.
[8] Ishida Y, Saito H, et al. High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium Tumefaciens. Nature Biotech, 1996, 14(6): 745-750.
[9] 黄路, 卫志明. 农杆菌介导的玉米遗传转化. 实验生物学报, 1999,32(4):381-387. Huang L, Wei Z M. Agrobacterium tumefaciens mediated maize transformation. Acta Biologiae Experimentalis Sinica,1999,32(4):381-387.
[10] 王雷, 张君, 于彦春, 等. 胚龄和2,4-D浓度对玉米自交系幼胚愈伤组织诱导率的影响. 玉米科学, 2001, 9(3): 26-28. Wang L, Zhang J, Yu Y C, et al. Influence of embryo age and 2,4-D concentration on callus induction ratios in inbred lines of maize. Journal of Maize Sciences, 2001, 9(3): 26-28.
[11] 张艳贞, 魏松红, 胡汉桥, 等. 农杆菌介导的优良玉米自交系遗传转化体系的建立. 沈阳农业大学学报, 2002, 33(3): 195-199. Zhang Y Z, Wei S H, Hu H Q, et al. Establishment of the system of conventional maize inbred-lines transformation mediated by Agrobacterium tumefaciens. Journal of Shenyang Agricultural University, 2002,33(3): 195-199.
[12] 赵云云, 周小梅, 王国英. 玉米幼胚组织培养及其转化的研究. 山西大学学报(自然科学版), 2006, 29(3): 308-312. Zhao Y Y, Zhou X M, Wang G Y. Study on Tissue Culture and Transformation of Maize. Journal of Shanxi University (Natural Science Edition), 2006, 29(6): 308-312.
[13] 袁鹰,李启云, 郝文媛,等. 农杆菌介导玉米遗传转化影响因子的研究. 分子植物育种, 2006, 4(2): 228-232. Yuan Y, Li Q Y, Hao W Y, et al. Studies on Influencing Factors of Agrobacterium tumefaciens Mediated Maize Transformation. Molecular Plant Breeding, 2006, 4(2): 228-232.
[14] Spencer T M, Gordon-Kamm W J, Daines R J, et al. Bialaphos selection of stable transformants from maize cell culture. Theor Appl Genet, 1990, 79(5): 625-631.
[15] 王宏伟, 梁业红, 史振声, 等. 共培养环境对玉米遗传转化的影响. 西北农业学报, 2011,20(9): 40-42. Wang H W, Liang Y H, Shi Z S, et al. Study on Co-culture System to Genetic Transformation of Maize. Acta Agriculturae Boreali-occidentalis Sinica, 2011, 20(9): 40-42.
[16] 杜何为, 许先凤, 黄敏, 等. 硝酸银对玉米幼胚组织培养的影响. 河北农业科学, 2008, 12 (8): 62-63. Du H W, Xu X F, Huang M, et al. Effect of AgNO3 on Tissue Culture of A188 Immature Embryos. Journal of Hebei Agricultural Sciences, 2008,12(8): 62-63.
[17] 李海霞, 秦文娟, 汤继华, 等. 2, 4-D和麦草畏对玉米自交系愈伤组织诱导和继代的影响. 河南农业大学学报, 2010, 44(3):243-248. Li H X, Qin W J, Tang J H, et al. Induction and screening of embryonic callus from immature embryo culture of maize inbred line. Journal of Henan Agricultural University, 2010, 44(3): 243-248.
[18] Ishida Y, Saito H, Hiei Y, et al. High efficiency transformation of Maize(Zea mays L. ) mediated by Agrobacteri-um tumfaciens. Nature Biotechnol, 1996, 14: 745-750.
[19] 攻建, 杨芳. 单子叶植物表达载体的构建及农杆菌介导的玉米遗传转化的研究. 生物技术, 2007, 17(3): 2-5. Gong J, Yang F. Construction of a Monocotyledon Expression Vector and Agrobacterium-mediated Transformation in Maize. Biotechnology, 2007, 17(3): 2-5.
[20] Huang X Q, Wei Z M. High-frequency plant regeneration through callus initiation from mature embryos of maize (Zea mays L.). Plant Cell Rep, 2004, 22(11): 793-800.
[21] Busch M, Seuter A, Hain R. Functional analysis of the early steps of carotenoid biosynthesis in tobacco. Plant Physiol, 2002, 128(2): 439-453.
[22] Rosati C, Aquilani R, Dharmapuri S, et al. Metabolic engineering of beta-carotene and lycopene content in tomato fruit. Plant J, 2000, 24(3): 413-420.
[23] Lu S, Van Eck J, Zhou X, et al. The cauliflower Or gene encodes a DnaJ cysteine-rich domain-containing protein that mediates high levels of β-carotene accumulation. Plant Cell, 2006, 18(12): 3549-3605.
[1] 梁晋刚,张旭冬,毕研哲,王颢潜,张秀杰. 转基因抗虫玉米发展现状与展望*[J]. 中国生物工程杂志, 2021, 41(6): 98-104.
[2] 尹泽超,王晓芳,龙艳,董振营,万向元. 玉米穗腐病抗性鉴定、遗传分析与分子机制*[J]. 中国生物工程杂志, 2021, 41(12): 103-115.
[3] 何伟,祝蕾,刘欣泽,安学丽,万向元. 玉米遗传转化与商业化转基因玉米开发*[J]. 中国生物工程杂志, 2021, 41(12): 13-23.
[4] 杨梦冰,江易林,祝蕾,安学丽,万向元. CRISPR/Cas植物基因组编辑技术及其在玉米中的应用*[J]. 中国生物工程杂志, 2021, 41(12): 4-12.
[5] 秦文萱,刘鑫,龙艳,董振营,万向元. 玉米叶夹角形成的遗传基础与分子机制解析*[J]. 中国生物工程杂志, 2021, 41(12): 74-87.
[6] 王锐璞,董振营,高悦欣,龙艳,万向元. 玉米籽粒淀粉含量遗传基础与调控机制*[J]. 中国生物工程杂志, 2021, 41(12): 47-60.
[7] 马雅杰,高悦欣,李依萍,龙艳,董振营,万向元. 玉米株高和穗位高的遗传基础与分子机制*[J]. 中国生物工程杂志, 2021, 41(12): 61-73.
[8] 梁爱玲,刘文婷,武攀,李倩,高健,张洁,刘卫东,贾士儒,郑迎迎. 来源于Exophiala aquamarina的新型玉米赤霉烯酮水解酶的性质及底物结合中心关键氨基酸的功能研究*[J]. 中国生物工程杂志, 2021, 41(10): 19-27.
[9] 雷海英,赵青松,白凤麟,宋慧芳,王志军. 利用CRISPR/Cas9鉴定玉米发育相关基因ZmCen*[J]. 中国生物工程杂志, 2020, 40(12): 49-57.
[10] 赵程程,孙长坡,常晓娇,伍松陵,林振泉. 大肠杆菌细胞裂解系统的构建及其在真菌毒素降解酶表达中的应用 *[J]. 中国生物工程杂志, 2019, 39(4): 69-77.
[11] 王友华,邹婉侬,柳小庆,王兆华,孙国庆. 全球转基因玉米专利信息分析与技术展望 *[J]. 中国生物工程杂志, 2019, 39(12): 83-94.
[12] 苏爱国,宋伟,王帅帅,赵久然. 玉米细胞质雄性不育及其育性恢复基因的研究进展[J]. 中国生物工程杂志, 2018, 38(1): 108-114.
[13] 安婷,季静,王昱蓉,马志刚,王罡,李倩,杨丹,张松皓. 百合鳞片的诱导分化及遗传转化效率分析[J]. 中国生物工程杂志, 2018, 38(1): 25-31.
[14] 吴锁伟,万向元. 利用生物技术创建主要作物雄性不育杂交育种和制种的技术体系[J]. 中国生物工程杂志, 2018, 38(1): 78-87.
[15] 田有辉,万向元. 玉米花药发育的细胞生物学与分子遗传学的研究方法[J]. 中国生物工程杂志, 2018, 38(1): 88-99.