Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2012, Vol. 32 Issue (07): 113-119    
综述     
siRNA脱靶效应类型与规避策略
唐德平1, 毛爱红2, 廖世奇2, 薛林贵1, 张柄林1
1. 兰州交通大学化学与生物工程学院 兰州 730070;
2. 甘肃省医学科学研究院 兰州 730050
The Types of siRNA Off-target Effects and the Strategies for Mitigation
TANG De-ping1, MAO Ai-hong2, LIAO Shi-qi2, XUE Lin-gui1, ZHANG Bing-lin1
1. The School of Chemical & Biological Engineering, Lanzhou Jiaotong University, lanzhou 730070, China;
2. Institute of Gansu Medical Science Research, lanzhou 730050, China
 全文: PDF(438 KB)   HTML
摘要: 小干扰RNAs(small interfere RNAs,siRNAs)能够特异性沉默靶基因,现已广泛应用于阐明基因功能,鉴定药物靶点,开发比目前更有效的治疗药物。然而siRNA脱靶效应(off-target effects,OTEs)导致基因沉默实验中表型效应解释复杂化,引起siRNA治疗毒副作用。与siRNA有关的脱靶效应有microRNA样脱靶效应、免疫刺激、RNAi元件饱和三种类型。综述了siRNA脱靶效应类型及减轻脱靶效应的方法,以增强该技术的实用性。
关键词: RNA干扰小干扰RNA脱靶效应microRNA样脱靶效应    
Abstract: Small interfering RNAs (siRNAs) can specific silence target genes,and are widely used to elucidate gene function,indentify drug targets and develop more specific therapeutics than are currently available. Off-target effects (OTEs) can complicate the interpretation of phenotypic effects in gene-silencing experiments and can potentially lead to unwanted toxicities. siRNAs OTEs include microRNA-like off-target effects, immune stimulation and saturation of the RNAi machinery. The types of off-target effects of siRNAs and methods to mitigate them was focused, to help enable effective application of RNAi technology.
Key words: RNAi    siRNA    Off-target effects    MicroRNA-like off-target effects
收稿日期: 2012-02-21 出版日期: 2012-07-25
ZTFLH:  Q522  
基金资助: 国家自然科学基金(81060180);甘肃省中青年基金(1107RJYA033)资助项目
通讯作者: 毛爱红     E-mail: maoaih@yahoo.com.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
唐德平
毛爱红
廖世奇
薛林贵
张柄林

引用本文:

唐德平, 毛爱红, 廖世奇, 薛林贵, 张柄林. siRNA脱靶效应类型与规避策略[J]. 中国生物工程杂志, 2012, 32(07): 113-119.

TANG De-ping, MAO Ai-hong, LIAO Shi-qi, XUE Lin-gui, ZHANG Bing-lin. The Types of siRNA Off-target Effects and the Strategies for Mitigation. China Biotechnology, 2012, 32(07): 113-119.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2012/V32/I07/113

[1] Tuschl T,Zamore P D,Lehmann R,et al. Targeted mRNA degradation by doubl stranded RNA in vitro. Genes & Dev, 1999, 13(24): 3191-3197.
[2] Richard W C, Erik J. Origins and mechanisms of miRNAs and siRNAs. Cell, 2009, 136(4): 642-655.
[3] Elbashir S M, Martinez J, Patkaniowska A, et al. Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. EMBO J, 2001, 20(23): 6877-6888.
[4] Jackson A L, Linsley P S, Recognizing and avoiding siRNA off-target effects for target identification and therapeutic application. Nature Rev Drug Discov, 2010, 9(1): 57-67.
[5] Jackson A L, Bartz S R, Schelter J, et al. Expression profiling reveals off-target gene regulation by RNAi. Nature Biotech, 2003, 21(6): 635-637.
[6] Jackson A L, Burchard J, Schelter J, et al. Widespread siRNA "off-target" transcript silencing mediated by seed region sequence complementarity. RNA, 2006(7), 12: 1179-1187.
[7] Wang Y L, Juranek S, Li H T, et al. Structure of an argonaute silencing complex with a seed-containing guide DNA and target RNA duplex. Nature, 2008, 456(7724): 921-926.
[8] Lin X Y, Ruan XA, Anderson M G, et al. siRNA-mediated off-target gene silence triggered by a 7nt complementation. Nucleic Acid Res, 2005, 33(14): 4527-4535.
[9] Burchard J, Jackson A L, Malkov V, et al. MicroRNA-like off-target transcript regulation by siRNAs is species specific. RNA, 2009, 15(2): 308-315.
[10] Cullen B R. Enhancing and confirming the specificity of RNAi experiments. Nature Methods, 2006, 3(9): 677-681.
[11] Echeverri C J, Beachy P A, Baum B, et al. Minimizing the risk of reporting false positives in large-scale RNAi screens. Nature Methods, 2006, 3(10): 777-779.
[12] Kittler R, Pelletier L, Ma C L, et al. RNA interference rescue by bacterial artificial chromosome transgenesis in mammalian tissue culture cells. Proc Natl Acad Sci, 2005, 102(7): 2396-2401.
[13] Grimson A, Farh K K H, Johnston W K, et al. MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell, 2007, 27(1): 91-105.
[14] Kittler R, Surendranath V, Heninger A K,et al. Genome-wide resources of endoribonuclease-prepared short interfering RNAs for specific loss-of-function studies. Nature Methods, 2007, 4(4): 337-344.
[15] Jackson A L, Burchard J, Leake D, et al. Position-specific chemical modification of siRNAs reduces "off-target" transcript silencing. RNA, 2006, 12(7): 1197-1205.
[16] Caffrey D R, Zhao J, Song Z L, et al. siRNA off-target effects can be reduced at concentrations that match their individual potency. PLoS ONE, 2011, 6(7): e21503.
[17] Lu X Z, Yang G D, Zhang J, et al. The sense strand pre-cleaved RNA duplex mediates an efficient RNA interference with less off-target and immune response effects. Applied Microbiology and Biotechnology, 2011, 90(2): 583-589.
[18] Vaish N, Chen F, Seth S, et al. Improved specificity of gene silencing by siRNAs containing Unlocked nucleobase analogs. Nucleic Acids Research, 2011, 39(5): 1823-1832.
[19] Petri S, Dueck A, Lehmann G, et al. Increased siRNA duplex stability correlates with reduced off-target and elevated on-target effects. RNA, 2011, 17(4): 551-554.
[20] Boudreau R L, Spengler R M, Davidson B L. Rational design of therapeutic siRNAs:minimizing off-targeting potential to improve the safety of RNAi therapy for huntington’s disease. Molecular Therapy, 2011, 19(9):2169-2177.
[21] Persengiev S P, Zhu X C, Green M R. Nonspecific, concentration-dependent stimulation and repression of mammalian gene expression by small interfering RNAs (siRNAs). RNA, 2004, 10(1): 12-18.
[22] Klinghoffer R A, Magnus J, Schelter J, et al. Reduced seed region-based off-target activity with lentivirus-mediated RNAi. RNA, 2010, 16(5): 879-884.
[23] Elbashir S M, Harborth J, Lendecke W, et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature, 2001, 411(6836): 494-498.
[24] Robbins M, Judg A, MacLachlan I. siRNA and innate immunity. Oligonucleotides, 2009, 19(2):89-102.
[25] Hornung V, Biller M G, Bourquin C, et al. Sequence-specific potent induction of IFN-alpha by short interfering RNA in plasmacytoid dendritic cells through TLR7. Nature Med, 2005, 11(3): 263-270.
[26] Judge A D, Sood V, Shaw J R, et al. Sequence-dependent stimulation of the mammalian innate immune response by synthetic siRNA. Nature Biotechnol, 2005, 23(4): 457-462.
[27] Diebold S S, Kaisho T, Hemmi H, et al. Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science, 2004, 303(5663): 1529-1531.
[28] Heil F, Hemmi H, Hochrein H, et al. Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science, 2004, 303(5663): 1526-1529.
[29] Forsbach A, Nemorin J G, Montino C, et al. Identification of RNA sequence motif stimulating sequence-specific TLR8-dependent immune responses. J Immunol, 2008, 180(6): 3729-3738.
[30] Goodchild A, Nopper N, King A, et al. Sequence determinants of innate immune activation by short interfering RNAs. BMC Immunol, 2009, 10: 40.
[31] Robbins M,Judge A,Ambegia E,et al. Misinterpreting the therapeutic effects of siRNA caused by immune stimulation. Hum Gene Ther, 2008, 19(10): 991-999.
[32] Kleinman M E, Yamada K, TakedaA, et al. Sequence-and target-independent angiogenesis suppression by siRNA via TLR3. Nature, 2008, 452(7187): 591-597.
[33] Armstrong M E, Gantier M, Li L L, et al. Small interfering RNAs induce macrophage migration inhibitory factor production and proliferation in breast cancer cell via a double-stranded RNA-dependent protein kinase-dependent mechanism. J Immunol, 2008, 180(11): 7125-7133.
[34] Eberle F, Gieβler K, Deck C, et al. Modifications in small interfering RNA that separate immunostimulation from RNA interference. J Immunol, 2008, 180(5): 3229-3237.
[35] Braasch D A, Corey D R. Locked nucleic acid (LNA): fine-tuning the recognition of DNA and RNA. Chem Biol, 2001, 8(1): 1-7.
[36] Judge A D, Bola G, Lee A C H, et al. Design of noninflammatory synthetic siRNA mediating potent gene silencing in vivo. Mol Ther, 2006, 13(3): 494-505.
[37] Robbins M, Judge A, Liang L, et al. 2'-O-methyl-modified RNAs act as TLR7 antagonists. Mol Ther, 2007, 15(9): 1663-1669.
[38] Sioud M. Induction of inflammatory cytokines and interferon responses by double-stranded and single-stranded siRNAs is sequence-dependent and requires endosomal localization. J Mol Biol, 2005, 348(5): 1079-1090.
[39] Yi R, Doehle B P, Qin Y, et al. Overexpression of exportin 5 enhances RNA interference mediated by short hairpin RNA and microRNAs. RNA, 2005, 11(2): 220-226.
[40] Grimm D, Streetz K L, Jopling C L, et al. Fatality in mice due to over saturation of cellular microRNA/short hairpin RNA pathways. Nature, 2006, 441(7092): 537-541.
[41] Bitko V, Musiyenko A, Shulyayeva O, et al. Inhibition of respiratory viruses by nasally administered siRNA. Nature Med, 2004, 11(1): 50-55.
[42] Hutvagner G, Simard M J, Mello C C, et al. Sequence-specific inhibition of small RNA function. PLoS Biology, 2004, 2(4): E98.
[43] John M, Constien R,Akinc A, et al. Effective RNAi-mediated gene silencing without interruption of the endogenous microRNA pathway. Nature, 2007, 449(7163): 745-747.
[44] Khan A A, Betel D, Miller M L, et al. Transfection of small RNAs globally perturbs gene regulation by endogenous microRNAs. Nature Biotechnol, 2009, 27(6): 549-555.
[45] Lares M R, Rossi J J,Ouellet D L,RNAi and small interfering RNAs in human disease therapeutic applications. Trends in Biotechnology, 2010, 28(11): 570-579.
[46] Ulrich W, Inga N, Mehmet K T, et al. Targeted delivery of short interfering RNAs -strategies for in vivo delivery. Recent Patents on Anti-Cancer Drug Discovery, 2009, 4(1): 1-8.
[1] 冯昭,李江浩,王佳华. 刺槐核糖体蛋白同源基因RpRPL22在共生结瘤过程中功能研究[J]. 中国生物工程杂志, 2021, 41(7): 10-21.
[2] 毕博,张宇,赵慧. 酵母杂交系统在CRISPR/Cas9基因编辑系统脱靶率研究中的应用*[J]. 中国生物工程杂志, 2021, 41(6): 27-37.
[3] 程瑜,施琼,安利钦,范梦恬,皇改改,翁亚光. BMP7基因沉默抑制钙盐诱导猪主动脉瓣膜间质细胞成骨分化 *[J]. 中国生物工程杂志, 2019, 39(5): 63-71.
[4] 冯昭,丑敏霞. Rpfan37在刺槐共生结瘤过程中的功能探究 *[J]. 中国生物工程杂志, 2018, 38(5): 47-55.
[5] 董维鹏,张少华,许祥,燕炯. 下调Fsp27基因表达联合杨梅素干预对3T3-L1细胞脂解的影响[J]. 中国生物工程杂志, 2018, 38(12): 7-13.
[6] 刘怡萱, 边珍, 马红梅. 癌症基因治疗技术进展与展望[J]. 中国生物工程杂志, 2016, 36(5): 106-111.
[7] 胡娜, 刘清, 唐照勇, 汤禾静, 敖澜, 赵紫豪, 方廖琼. siRNA干扰MMP-9FAK双基因抑制小鼠黑色素瘤生长和在体迁移[J]. 中国生物工程杂志, 2016, 36(5): 34-39.
[8] 刘丽, 杨晓慧, 王瑞明. RNA干扰沉默KAT基因对蜜蜂合成10-HDA的影响[J]. 中国生物工程杂志, 2016, 36(4): 63-68.
[9] 赵志武, 王君实, 马敏, 张少华, 燕炯. 下调Perilipin 1基因表达对3T3-L1细胞脂解的影响[J]. 中国生物工程杂志, 2016, 36(3): 17-22.
[10] 薛玉文, 李铁军, 周家名, 陈莉. 多靶向RNA干扰技术在基因治疗中的应用与前景[J]. 中国生物工程杂志, 2015, 35(1): 75-81.
[11] 苏蓝, 张萍, 汪杨俊琦, 钟儒刚. siRNA抑制乙肝病毒的研究进展[J]. 中国生物工程杂志, 2014, 34(9): 102-107.
[12] 汤禾静, 唐照勇, 刘隆兴, 张小梅, 王祎婷, 方廖琼. siRNA联合沉默MMP-9和FAK基因对小鼠黑色素瘤高转移细胞B16F10体外侵袭和迁移的影响[J]. 中国生物工程杂志, 2014, 34(9): 40-47.
[13] 黄天晴, 孔庆然, 李妍, 于淼, 刘忠华. 胰岛素受体底物1和2敲低对猪肝脏细胞糖脂代谢的影响[J]. 中国生物工程杂志, 2014, 34(4): 27-35.
[14] 庞敏, 王海龙, 郭民, 郭睿. 人ANKRD49基因真核表达载体的构建及其功能的初步研究和RNA干扰靶点的鉴定[J]. 中国生物工程杂志, 2014, 34(10): 15-21.
[15] 张浩然, 曾志勇, 陈君敏. 体外RNA干扰下调DEPTOR表达对人多发性骨髓瘤细胞增殖和凋亡能力的影响[J]. 中国生物工程杂志, 2013, 33(5): 13-21.