Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2012, Vol. 32 Issue (07): 102-106    
技术与方法     
固定化对酵母细胞发酵产ATP能力的影响
闫相如, 林丽萍, 何名芳, 陈卫平
江西农业大学食品科学与工程学院 南昌 330045
Immobilized Technology Impact on Fermentation ATP Ability of Yeast
YAN Xiang-ru, LIN Li-ping, HE Ming-fang, CHEN Wei-ping
College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
 全文: PDF(724 KB)   HTML
摘要: 通过试验对酵母菌细胞的固定化方法及固定化酵母细胞在发酵生产ATP方面的应用进行了探讨。综合固定化颗粒的性能指标(粒径、弹性和机械强度)和发酵产ATP的能力,通过正交试验对酵母菌细胞的包埋条件进行了优化,确定了固 定化酵母细胞的较优组合为聚乙烯醇 3.5%、海藻酸钠2%、CaCl2 3%及交联时间6h,发酵后ATP含量最高,达到0.716g/L。进一步发酵条件的试验证实,固定化能提高酵母菌细胞对温度适应范围,延长发酵生产周期,从而提高菌体的利用率。
关键词: 固定化ATP酵母菌    
Abstract: Immobilization method of yeast cell and its application in fermentation production of ATP are discussed. Considering the performance index of immobilized particles(particle size, elasticity and mechanical strength) and the capacity of fermentation producing ATP, orthogonal experiments optimize embedding conditions of the yeast. The optimal immobilization conditions of yeast cell was determined that is 3.5% of polyvinyl alcohol, 2% of sodium alginate, 3% of CaCl2 and 6 hours of cross-linking time. Under this fermentation condition, the content of ATP was the highest, reaching 0.783g/L. Further fermentation experiments confirmed that the immobilization of yeast cell can improve the temperature adaptation range, and lengthen the fermentation cycle of producing ATP.
Key words: Immobilization    ATP    Yeast
收稿日期: 2012-02-08 出版日期: 2012-07-25
ZTFLH:  Q815  
基金资助: 江西省教育厅资助项目(GJJ10414)
通讯作者: 陈卫平     E-mail: iaochen@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
闫相如
林丽萍
何名芳
陈卫平

引用本文:

闫相如, 林丽萍, 何名芳, 陈卫平. 固定化对酵母细胞发酵产ATP能力的影响[J]. 中国生物工程杂志, 2012, 32(07): 102-106.

YAN Xiang-ru, LIN Li-ping, HE Ming-fang, CHEN Wei-ping. Immobilized Technology Impact on Fermentation ATP Ability of Yeast. China Biotechnology, 2012, 32(07): 102-106.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2012/V32/I07/102

[1] 薛亮,黄祖新,罗招城,等.海藻酸钠-PVA固定化酿酒酵母制备工艺的优化.酿造科技,2009, 2:27-30. Xue L, Huang Z X, Luo Z C, et al. Optimization of the techniques of S.cerevisiae immobilization by sodium alginate and PVA. Liquor-Making Science & Technology, 2009, 2:27-30.
[2] Fu N,Peiris P,Markham J,et al. A novel co-culture process with Zymomonas mobilis and Pichia stipitis for efficient ethanol production on glucose /xylose mixtures. Enzyme and Microbial Technology,2009,45( 3): 210-217.
[3] 丁成,杨波,等.固定化对氯苯酚降解菌在生物硫化床上的降解特性.环境工程学报,2011,5(1):70-74. Ding C, Yang B, et al. Degradation characteristics of immobilized p-chlorophenol-degradating strain in bio-fluidized bed reactor.Chinese Journal of Environmental Engineering, 2011,5(1):70-74.
[4] 张建国,蔡瑞,李新华,等.发酵重组Pichia pastoris生产腺苷甲硫氨酸的研究. 工业微生物,2004,34(4): 1-5. Zhang J G,Cai R,Li X H, et al. Optimization of S-adenosylmethionine production by recombinant Pichia pastoris. Industrial Microbiology, 2004,34(4):1-5.
[5] Petra Meissner Bernd Sehrotder Development of a fixed bed bioreactor for the expansion of human hematopoietie progenitor cells.Cytotechnology,1999,30.
[6] Kyung Won Jung,Dong Hoon Kim,Sang HyounKim,et al.Bioreactor design for continuous dark fermentative hydrogen production.Bioresource Technology, 2011,102:8612 8620.
[7] Wanying Yao, Xiao Wu, Jun Zhu,et al.Bacterial cellulose membrane -A new support carrier for yeast immobilization for ethanol fermentation.Process Biochemistry, 2011,46:2054-2058.
[8] 王斌,江和源,张建勇,等.固定化多酚氧化酶填充床反应器连续制备茶黄素.食品与发酵工业,2011,37 (5):40-44. Wang B, Jiang H Y, Zhang J Y,et al. Study on continuous preparation of theaflavins by immobilized polyphenol enzyme in packed bed reactor.Food and Fermentation Industries,2011,37 (5):40-44.
[9] 牛卫宁,左晓佳,丁焰,等.固定化E.Coli JM109细胞催化合成S-腺苷蛋氨酸.现代化工,2009,26(3):288-292. Niu W N, Zuo X J, Ding Y,et al. Biosynthesis of S-adenosylmethionine by immobilized whole cell of E. Coli JM109 (pBR322-MAT). Modern Chemical Industry, 2009,26(3):288-292.
[10] 刘惠,林建平,吴坚平,等.酿酒酵母生物转化蛋氨酸生产SAM.化学反应工程与工艺,2002,18(4):310-314. Liu H, Lin J P, Wang J P,et al.Production of S-adenosyl-L-methionine using Saccharomyces cerevisiae by bioconversion of L-methionine. Chinese Reaction Engineering and Technology, 2002,18(4):310-314.
[11] Shozo S,Sakayu S,Hideaki Y.Prdduction of S-adenosyl-L-methionine by Saccharomyces sake.J Biotechnol,1986,4(6):345-354.
[1] 李潇瑾,李艳萌,李振坤,徐安健,杨晓曦,黄坚. 基于转录组测序探究ATP7B基因缺陷小鼠铜累积诱导肝细胞自噬的相关机制*[J]. 中国生物工程杂志, 2021, 41(9): 10-19.
[2] 陈开通,郑文隆,杨立荣,徐刚,吴坚平. 氨基树脂固定化L-苏氨酸醛缩酶及其应用*[J]. 中国生物工程杂志, 2021, 41(9): 55-63.
[3] 杨运松,梁金花,杨晓瑞,马艺鸣,金爽,孙姚瑶,朱建良. 柴油生物酶催化氧化脱硫的研究进展[J]. 中国生物工程杂志, 2021, 41(10): 109-115.
[4] 赵妍淑,张金华,宋浩. 工程原核生物和酵母菌中生产单克隆抗体和抗体片段研究进展 *[J]. 中国生物工程杂志, 2020, 40(8): 74-83.
[5] 朱衡,张继福,张云,胡云峰. 环氧交联剂和氨基载体固定化海洋假丝酵母脂肪酶*[J]. 中国生物工程杂志, 2020, 40(5): 57-68.
[6] 董璐,张继福,张云,胡云峰. 环氧树脂固定化的Bacillus sp. DL-2胞外蛋白酶在拆分(±)-乙酸苏合香酯中的应用 *[J]. 中国生物工程杂志, 2020, 40(4): 49-58.
[7] 朱衡,张继福,张云,孙爱君,胡云峰. 聚乙二醇二缩水甘油醚交联氨基载体LX-1000EA固定化脂肪酶 *[J]. 中国生物工程杂志, 2020, 40(1-2): 124-132.
[8] 朱衡,林海蛟,张继福,张云,孙爱君,胡云峰. 氨基载体共价结合固定化海洋假丝酵母脂肪酶 *[J]. 中国生物工程杂志, 2019, 39(7): 71-78.
[9] 巩凤芹,刘启顺,谭海东,金花,谭成玉,尹恒. MOFs固定5-羟甲基糠醛氧化酶及其催化活性的研究 *[J]. 中国生物工程杂志, 2019, 39(6): 41-47.
[10] 林海蛟,张继福,张云,孙爱君,胡云峰. 添加剂对大孔吸附树脂固定化脂肪酶的影响 *[J]. 中国生物工程杂志, 2019, 39(4): 38-51.
[11] 张颖,王莹,杨立荣,吴坚平. DA-F127水凝胶包埋固定化含腈水合酶细胞[J]. 中国生物工程杂志, 2019, 39(11): 70-77.
[12] 孙帆,宿玲恰,张康,吴敬. D-阿洛酮糖 3-差向异构酶在枯草芽孢杆菌中的高效表达及固定化细胞研究 *[J]. 中国生物工程杂志, 2018, 38(7): 83-88.
[13] 杜凯,张卓玲,李婷华,饶微. 抗体固定化方法研究进展[J]. 中国生物工程杂志, 2018, 38(4): 78-89.
[14] 李继彬, 陈志, 陈华友. 腈水解酶克隆表达、固定化及分子改造的研究进展[J]. 中国生物工程杂志, 2017, 37(9): 141-147.
[15] 张艳芳, 孙瑞芬, 郭树春, 侯建华. 向日葵V-ATPase a3亚基基因的克隆及表达分析[J]. 中国生物工程杂志, 2017, 37(5): 19-27.