Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2012, Vol. 32 Issue (05): 24-30    
研究报告     
重组人GALNT3-sol蛋白在毕赤酵母中的高效表达和活性鉴定
孔蕴1, 郜海涛1, 李树芳1, 王鹏1,2, 顾国锋2, 顾黎1,2
1. 山东大学生命科学学院 微生物技术国家重点实验室 济南 250100;
2. 国家糖工程技术研究中心 济南 250100
Expression and Purification of Functional HuGALNT3 without the Transmembrane Domain (huGALNT3-sol) in Pichia pastoris
KONG Yun1, GAO Hai-tao1, LI Shu-fang1, WANG Peng1,2, GU Guo-feng2, GU Li1,2
1. State key laboratory for Microbial Technology, School of Life Science, Shandong University, Jinan 250100, China;
2. National Glycoengineering Research Center, Jinan 250100, China
 全文: PDF(865 KB)   HTML
摘要:

目的:为了获得有催化活性的人乙酰半乳糖胺转移酶3 (GALNT3),构建了GALNT3可溶性区域(GALNT3-sol)的真核分泌表达载体,在巴斯德毕赤酵母中表达并纯化GALNT3-sol蛋白,体外检测其转糖基活性。方法:以构建好的pET15b/GALNT3-sol为模板进行PCR,扩增编码人GALNT3-sol的cDNA片段(1 755 bp),将其克隆至真核表达载体pPIC9K,载体线性化后采用电击法转化毕赤酵母 GS115。 通过MD平板和G418平板筛选出阳性高拷贝重组菌株。阳性菌株经过甲醇诱导表达人GALNT3-sol重组蛋白,表达上清进行Ni-NAT分离纯化。 分别采用SDS-PAGE和Western blot鉴定纯化的重组蛋白,并使用HPLC和MALDI-TOF/MS分析其转糖基化反应的活性。结果:成功构建了能够分泌表达GALNT3-sol的毕赤酵母菌株。阳性表达菌株在 BMMY 培养基 (pH 6.0) 中 20℃培养,经 0.5%甲醇诱导表达 96 h,摇瓶表达量可达 5mg/L。SDS-PAGE和Western blot结果显示表达重组蛋白为糖基化形式。活性检测显示表达的重组蛋白具有转糖基活性。结论:成功获得可以高效分泌表达具有活性的人GALNT3-sol蛋白的毕赤酵母菌株,为进一步研究人GALNT3的性质及其应用提供了基础。

关键词: GALNT3毕赤酵母分泌表达活性    
Abstract:

Objective:In order to research the bioactivity of GALNT3, the truncated part of GALNT3 (huGALNT3-sol) which was deleted of the hydrophobic trans-membrane domain were obtained using Pichia pastoris expression system, and assayed the transferring GalNAc activity of recombinant huGALNT3-sol. Methods: The gene of human GALNT3-sol (1 755 bp)was amplified from pET15b/ GALNT3-sol and cloned into expression vector pPIC9k, and the recombinant plasmid was transformed into Pichia pastoris GS115 strain through electroporation. The high copy recombinant strains with high-level huGALNT3-sol production were screened out by MD plate and G418. High level of huGALNT3-sol was obtained in BMMY medium the induction of methanol, and purified from the supernatant with Ni-NAT.The identity of the recombinant protein was confirmded by SDS-PAGE and then Western blotting analysis. HPLC and MALDI-TOF-MS analysis were used to identify the bioactivity of recombinant huGALNT3-sol. Results:The recombinant Pichia pastoris which could secretory express the human GALNT3-sol protein was constructed successfully. High level of huGALNT3-sol was obtained in BMMY medium (pH 6.0) after 96 hours induction of 20℃ and 0.5% methanol, with the highest yield of 5mg/L in shake flask culture. The identity of the recombinant protein was confirmed by Western blot analysis and the huGALNT3-sol expressed in Pichia pastoris is in higher molecular weight glycoforms. The activity assay showed the recombinant huGALNT3-sol has the activity of transferring GalNAc to Ser/Thr residues in peptide. Conclusion:The human GALNT3-sol, which has the activity of transferring GalNAc to Ser/Thr residues in peptide, was successfully expressed and purified in Pichia pastoris. It provides support for the further research and application of GALNT3.

Key words: GALNT3    Pichia pastoris    Secretory expression    Activity
收稿日期: 2012-01-13 出版日期: 2012-05-25
ZTFLH:  Q786  
基金资助:

国家自然科学基金青年资助项目(31000368)

通讯作者: 顾黎     E-mail: yehe.gl@sdu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

孔蕴, 郜海涛, 李树芳, 王鹏, 顾国锋, 顾黎. 重组人GALNT3-sol蛋白在毕赤酵母中的高效表达和活性鉴定[J]. 中国生物工程杂志, 2012, 32(05): 24-30.

KONG Yun, GAO Hai-tao, LI Shu-fang, WANG Peng, GU Guo-feng, GU Li. Expression and Purification of Functional HuGALNT3 without the Transmembrane Domain (huGALNT3-sol) in Pichia pastoris. China Biotechnology, 2012, 32(05): 24-30.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2012/V32/I05/24


[1] Borsig L, Wong R, Feramisco J, et al. Heparin and cancer revisited: mechanistic connections involving platelets, P-selectin, carcinoma mucins, and tumor metastasis. Proc Natl Acad Sci U S A, 2001, 98 (6): 3352-3357.

[2] Kawakubo M, Ito Y, Okimura Y, et al. Natural antibiotic function of a human gastric mucin against Helicobacter pylori infection. Science, 2004, 305(5686): 1003-1006.

[3] Rosen S D, Hwang S T, Giblin P A, et al. High-endothelial-venule ligands for L-selectin: identification and functions. Biochem Soc Trans, 1997, 25 (2): 428-433.

[4] Rudd P M, Elliott T, Cresswell P, et al. Glycosylation and the immune system. Science, 2001, 291(5512): 2370-2376.

[5] Homa F L, Hollander T, Lehman D J, et al. Isolation and expression of a cDNA clone encoding a bovine UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase. J Biol Chem, 1993, 268 (17): 12609-12616.

[6] Schwientek T, Bennett E P, Flores C, et al. Functional conservation of subfamilies of putative UDP-N-acetylgalactosamine:polypeptide N-acetylgalactosaminyltransferases in Drosophila, Caenorhabditis elegans, and mammals. One subfamily composed of l(2)35Aa is essential in Drosophila. J Biol Chem, 2002, 277 (25): 22623-22638.

[7] Ten Hagen K G, Fritz T A, Tabak L A. All in the family: the UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferases. Glycobiology, 2003, 13 (1): 1R-16R.

[8] Gill D J, Chia J, Senewiratne J, et al. Regulation of O-glycosylation through Golgi-to-ER relocation of initiation enzymes. J Cell Biol, 2010, 189 (5): 843-858.

[9] Fritz T A, Raman J, Tabak L A. Dynamic association between the catalytic and lectin domains of human UDP-GalNAc:polypeptide alpha-N-acetylgalactosaminyltransferase-2. J Biol Chem, 2006, 281 (13): 8613-8619.

[10] Mardberg K, Nystrom K, Tarp M A, et al. Basic amino acids as modulators of an O-linked glycosylation signal of the herpes simplex virus type 1 glycoprotein gC: functional roles in viral infectivity. Glycobiology, 2004, 14 (7): 571-581.

[11] Bennett E P, Hassan H, Mandel U, et al. Cloning and characterization of a close homologue of human UDP-N-acetyl-alpha-D-galactosamine:Polypeptide N-acetylgalactosaminyltransferase-T3, designated GalNAc-T6. Evidence for genetic but not functional redundancy. J Biol Chem, 1999, 274 (36): 25362-25370.

[12] Wandall H H, Hassan H, Mirgorodskaya E, et al. Substrate specificities of three members of the human UDP-N-acetyl-alpha-D-galactosamine: Polypeptide N-acetylgalactosaminyltransferase family, GalNAc-T1, -T2, and -T3. J Biol Chem, 1997, 272 (38): 23503-23514.

[13] Hashimoto R, Fujitani N, Takegawa Y, et al. An efficient approach for the characterization of mucin-type glycopeptides: the effect of O-glycosylation on the conformation of synthetic mucin peptides. Chemistry, 2010, 17 (8): 2393-2404.

[14] Raman J, Fritz T A, Gerken T A, et al. The catalytic and lectin domains of UDP-GalNAc:polypeptide alpha-N-Acetylgalactosaminyltransferase function in concert to direct glycosylation site selection. J Biol Chem, 2008, 283 (34): 22942-22951.

[15] Imberty A, Piller V, Piller F, et al. Fold recognition and molecular modeling of a lectin-like domain in UDP-GalNac:polypeptide N-acetylgalactosaminyltransferases. Protein Eng, 1997, 10 (12): 1353-1356.

[16] Hazes B. The (QxW)3 domain: a flexible lectin scaffold. Protein Sci, 1996, 5 (8): 1490-1501.

[17] Pedersen J W, Bennett E P, Schjoldager K T, et al. Lectin domains of polypeptide GalNAc transferases exhibit glycopeptide binding specificity. J Biol Chem, 2011, 286 (37): 32684-32696.

[18] Perrine C L, Ganguli A, Wu P, et al. Glycopeptide-preferring polypeptide GalNAc transferase 10 (ppGalNAc T10), involved in mucin-type O-glycosylation, has a unique GalNAc-O-Ser/Thr-binding site in its catalytic domain not found in ppGalNAc T1 or T2. J Biol Chem, 2009, 284 (30): 20387-20397.

[19] Topaz O, Shurman D L, Bergman R, et al. Mutations in GALNT3, encoding a protein involved in O-linked glycosylation, cause familial tumoral calcinosis. Nat Genet, 2004, 36 (6): 579-581.

[20] 孔蕴, 郜海涛, 李树芳, 等. 人 GALNT3- sol 蛋白的原核表达和抗体制备. 细胞与分子免疫学杂志, 2011, 27 (10): 1117-1120. Kong Y, Gao H T, Li S F, et al. Prokaryotic expression and antibody preparation of human GALNT3-sol protein. Chinese Journal of Cellular and Molecular Immunology, 2011, 27 (10): 1117-1120.

[21] Cheng L, Tachibana K, Iwasaki H, et al. Characterization of a novel human UDP-GalNAc transferase, pp-GalNAc-T15. FEBS Lett, 2004, 566 (1-3): 17-24.

[22] Iwasaki H, Zhang Y, Tachibana K, et al. Initiation of O-glycan synthesis in IgA1 hinge region is determined by a single enzyme, UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase 2. J Biol Chem, 2003, 278 (8): 5613-5621.

[23] Yoshimura Y, Matsushita T, Fujitani N, et al. Unexpected tolerance of glycosylation by UDP-GalNAc:polypeptide alpha-N-acetylgalactosaminyltransferase revealed by electron capture dissociation mass spectrometry: carbohydrate as potential protective groups. Biochemistry, 2010, 49 (28): 5929-5941.

[24] 周嘉梁,吴士良. 肿瘤细胞O-GalNAc聚糖的生物合成途径. 生命的化学, 2004, 24(4): 350-353. Zhou J L, Wu S L. Pathways of O-GalNAc Glycan Biosynthesis in Cancer Cells. Chemistry of Life, 2004, 24 (4): 350-353.

[25] DeFrees S, Wang Z G, Xing R, et al. GlycoPEGylation of recombinant therapeutic proteins produced in Escherichia coli. Glycobiology, 2006, 16 (9): 833-843.

[26] Henderson G E, Isett K D, Gerngross T U. Site-specific modification of recombinant proteins: a novel platform for modifying glycoproteins expressed in E. coli. Bioconjug Chem, 2011, 22 (5): 903-912.

[1] 邵映芝,车鉴,程驰,江志阳,薛闯. 分子生物学方法提高电活性微生物胞外电子传递效率的研究进展*[J]. 中国生物工程杂志, 2021, 41(6): 50-59.
[2] 张虎,刘镇洲,陈家敏,高保燕,张成武. 利用海洋硅藻生产生物活性物质研究进展*[J]. 中国生物工程杂志, 2021, 41(4): 81-90.
[3] 陈中伟,郑璞,陈鹏程,吴丹. 耐热植酸酶突变体的筛选及性质研究 *[J]. 中国生物工程杂志, 2021, 41(2/3): 30-37.
[4] 魏子翔,张柳群,雷磊,韩正刚,杨江科. 疏棉状嗜热丝孢菌(Thermomyces lanuginosus)脂肪酶的理性设计提高其活性和温度稳定性[J]. 中国生物工程杂志, 2021, 41(2/3): 63-69.
[5] 邓蕊,曾佳利,卢雪梅. 基于Musca domestica cecropin的抗肿瘤小分子衍生肽筛选及构效关系解析*[J]. 中国生物工程杂志, 2021, 41(11): 14-22.
[6] 陈鑫洁,钱芷兰,刘启,赵清,张元兴,蔡孟浩. 毕赤酵母底盘芳香族氨基酸合成途径改造生产肉桂酸及对香豆酸*[J]. 中国生物工程杂志, 2021, 41(10): 52-61.
[7] 石鹏程, 纪晓俊. 酵母系统表达人表皮生长因子研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 72-79.
[8] 陈东,李程程,史仲平. 植物乳杆菌胞外多糖包覆的高稳定性硒纳米颗粒的制备及其抗氧化活性的研究*[J]. 中国生物工程杂志, 2020, 40(9): 18-27.
[9] 梅雨薇,杨子云,于樊,龙旭伟. 生物表面活性剂脂肽的发酵生产及抑菌应用研究进展*[J]. 中国生物工程杂志, 2020, 40(5): 105-116.
[10] 章小毛,郭敬涵,洪解放,陆海燕,丁娟娟,邹少兰,范寰. UPRE-lac Z为报告基因评价酵母UPR响应初步研究 *[J]. 中国生物工程杂志, 2020, 40(10): 1-9.
[11] 陈春琳,秦松,宋宛霖,刘志丹,刘正一. 褐藻寡糖生物法制备研究进展 *[J]. 中国生物工程杂志, 2020, 40(10): 85-95.
[12] 胡艳红,龚雪梅,丁柳柳,高嵩,李婷婷. 利用短短芽孢杆菌进行酮还原酶CgKR2的高效表达与纯化 *[J]. 中国生物工程杂志, 2019, 39(8): 59-65.
[13] 田园,李艳玲. 基于重组毕赤酵母的fusaruside生物合成 *[J]. 中国生物工程杂志, 2019, 39(7): 8-14.
[14] 彭强强,刘启,徐名强,张元兴,蔡孟浩. 新型重组毕赤酵母产人胰岛素前体的表达工艺研究 *[J]. 中国生物工程杂志, 2019, 39(7): 48-55.
[15] 严建,贾禄强,丁健,史仲平. 甲醇周期诱导控制强化毕赤酵母生产猪α干扰素 *[J]. 中国生物工程杂志, 2019, 39(6): 32-40.