Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2012, Vol. 32 Issue (05): 120-128    
综述     
生物催化中酰胺酶立体选择性的影响因素
金建良, 徐建妙, 郑裕国
浙江工业大学生物与环境工程学院 杭州 310014
Factors Affect the Enantioselectivity of Amidase in Biocatalysis
JIN Jian-liang, XU Jian-miao, ZHENG Yu-guo
College of Biological and Environmental Engineering,Zhejiang University of Technology, Hangzhou 310014, China
 全文: PDF(619 KB)   HTML
摘要:

立体选择性酰胺酶是一种重要的手性合成工具酶,在制备手性羧酸及其衍生物方面具有广阔的应用前景,日益受到重视。在酰胺酶的应用中,其立体选择性影响巨大。从底物、反应温度、pH、添加共溶剂和微生物来源5个方面综述了其对酰胺酶立体选择性的影响,对提高酰胺酶的立体选择性,扩大其在制备光学活性化合物领域的应用具有重要的意义。

关键词: 酰胺酶立体选择性影响因素    
Abstract:

As a promising chiral synthesis tool, amidases have received growing attention with application in production of optically pure carboxyl acids and related derivatives. Enantioselectivity of amidase plays a vital role in amidase catalyzed reactions. Effects of microbial amidase sources and reaction factors such as substrate, temperature, pH as well as cosolvent on amidase enantioselectivity were summarized. It is helpful in improving amidase enantioselectivity and application of amidase in production of valuable optically pure compounds.

Key words: Amidase    Enantioselectivity    Factors
收稿日期: 2011-12-29 出版日期: 2012-05-25
ZTFLH:  Q55  
通讯作者: 郑裕国     E-mail: zhengyg@zjut.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

金建良, 徐建妙, 郑裕国. 生物催化中酰胺酶立体选择性的影响因素[J]. 中国生物工程杂志, 2012, 32(05): 120-128.

JIN Jian-liang, XU Jian-miao, ZHENG Yu-guo. Factors Affect the Enantioselectivity of Amidase in Biocatalysis. China Biotechnology, 2012, 32(05): 120-128.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2012/V32/I05/120


[1] 郑裕国,薛亚平,柳志强,等.腈转化酶在精细化学品生产中的应用.生物工程学报,2009, 25(12):1795-1807. Zheng Y G,Xue Y P,Liu Z Q,et al. Applications of nitrile converting enzymes in the production of fine chemicals. Chinese Journal of Biotechnology,2009,25(12):1795-1807.

[2] Mayaux J F,Cerbelaud E,Soubrier F,et al. Purification, cloning and primary structure of a new enantiomer-selective amidase from a Rhodococcus Strain - structural evidence for a conserved genetic coupling with nitrile hydratase. Journal of Bacteriology,1991,173(21):6694-6704.

[3] Martinkova L,Kren V. Nitrile- and amide-converting microbial enzymes: Stereo-,regio- and chemoselectivity. Biocatalysis and Biotransformation,2002,20(2):73-93.

[4] Lorenz P,Eck J. Screening for novel industrial biocatalysts. Engineering in Life Sciences,2004,4(6):501-504.

[5] Schmid A,Dordick J S,Hauer B,et al. Industrial biocatalysis today and tomorrow. Nature,2001, 409(6817):258-268.

[6] Kobayashi M,Komeda H,Nagasawa T,et al. Amidase coupled with low-molecular-mass nitrile hydratase from Rhodococcus Rhodochrous J1 - sequencing and expression of the gene and purification and characterization of the gene-product. European Journal of Biochemistry,1993, 217(1):327-336.

[7] Ciskanik L M,Wilczek J M,Fallon R D. Purification and characterization of an enantioselective amidase from Pseudomonas Chlororaphis B23. Applied and Environmental Microbiology,1995,61(3):998-1003.

[8] Petre D,Cerbelaud E,Yeh P. Enantioselective amidases and uses thereof. US 5766918,1998.

[9] Hermes H F M,Tandler R F,Sonke T,et al. Purification and characterization of an L-amino amidase from Mycobacterium Neoaurum ATCC 25795. Applied and Environmental Microbiology,1994,60(1):153-159.

[10] Hirrlinger B,Stolz A,Knackmuss H J. Purification and properties of an amidase from Rhodococcus erythropolis MP50 which enantioselectively hydrolyzes 2-arylpropionamides. Journal of Bacteriology,1996,178(12):3501-3507.

[11] Yamamoto K,Otsubo K,Matsuo A,et al. Production of R-(-)-ketoprofen from an amide compound by Comamonas acidovorans KPO-2771-4. Applied and Environmental Microbiology,1996,62(1):152-155.

[12] Yang Z Y,Ni Y,Lu Z Y,et al. Industrial production of S-2,2-dimethylcyclopropanecarboxamide with a novel recombinant R-amidase from Delftia tsuruhatensis. Process Biochemistry,2011,46(1):182-187.

[13] Ozaki A,Kawasaki H,Yagasaki M,et al. Enzymatic production of D-alanine from DL-alaninamide by novel D-alaninamide specific amide hydrolase. Bioscience Biotechnology and Biochemistry,1992,56(12):1980-1984.

[14] Prelog V. Specification of the stereospecificity of some oxidoreductases by diamond lattice sections. Pure Appl. Chem,1964,9(9):119-130.

[15] Kazlauskas R J,Weissfloch A N E,Rappaport A T,et al. A rule to predict which enantiomer of a secondary alcohol reacts faster in reactions catalyzed by cholesterol esterase, lipase from Pseudomonas cepacia, and lipase from Candida rugosa. Journal of Organic Chemistry,1991,56(8):2656-2665.

[16] Ma D Y,Wang D X,Pan J,et al. Nitrile biotransformations for the synthesis of highly enantioenriched beta-hydroxy and beta-amino acid and amide derivatives: A general and simple but powerful and efficient benzyl protection strategy to increase enantioselectivity of the amidase. Journal of Organic Chemistry,2008,73(11):4087-4091.

[17] Wu Z L,Li Z Y. Enantioselective hydrolysis of various racemic alpha-substituted arylacetonitriles using Rhodococcus sp. CGMCC 0497. Tetrahedron-Asymmetry,2001,12(23):3305-3312.

[18] Phillips R S. Temperature modulation of the stereochemistry of enzymatic catalysis:Prospects for exploitation. Trends in Biotechnology,1996,14(1):13-16.

[19] Phillips R S. Temperature effects on stereochemistry of enzymatic-reactions. Enzyme and Microbial Technology,1992,14(5):417-419.

[20] Jin S J,Zheng R C, Zheng Y G,et al. R-enantioselective hydrolysis of 2, 2-dimethylcyclopropanecarboxamide by amidase from a newly isolated strain Brevibacterium epidermidis ZJB-07021. Journal of Applied Microbiology,2008,105(4):1150-1157.

[21] Zheng R C,Wang Y S,Liu Z Q,et al. Isolation and characterization of Delftia tsuruhatensis ZJB-05174, capable of R-enantioselective degradation of 2,2-dimethylcyclopropanecarboxamide. Research in Microbiology,2007,158(3):258-264.

[22] Yeom S J,Kim H J,Oh D K. Enantioselective production of 2, 2-dimethylcyclopropane carboxylic acid from 2, 2-dimethylcyclopropane carbonitrile using the nitrile hydratase and amidase of Rhodococcus erythropolis ATCC 25544. Enzyme and Microbial Technology,2007,41(6-7):842-848.

[23] 彭立凤, 赵汝淇.有机介质中酶催化活性和选择性的调控.生物技术通报,1999,15(6):28-32. Peng L F,Zhao R Q. Accommodation and control of enzymatic activity and selectivity in organic solvents. Biotechnology Bulletin,1999,15(6):28-32.

[24] 郑仁朝.立体选择性酰胺酶的筛选及其动力学拆分制备(S)-(+)-2,2-二甲基环丙烷甲酰胺的研究. 杭州:浙江工业大学,生物与环境工程学院,2007. Zheng R C. Screening for enantioselective amidase: Kinetic resolution of racemate to (S)-(+)-2,2-dimethylcyclopropane carboxamide. Hangzhou:Zhejiang University of Technology,College of Biological and Environmental Engineering,2007.

[25] Gilligan T,Yamada H,Nagasawa T. Production of S-(+)-2-phenylpropionic acid from (R,S)-2-phenylpropionitrile by the combination of nitrile hydratase and stereoselective amidase in Rhodococcus equi TG328. Applied Microbiology and Biotechnology,1993,39(6):720-725.

[26] Shaw N M,Naughton A,Robins K,et al. Selection, purification, characterisation, and cloning of a novel heat-stable stereo-specific amidase from Klebsiella oxytoca, and its application in the synthesis of enantiomerically pure (R)- and (S)-3,3,3-trifluoro-2-hydroxy-2-methylpropionic acids and (S)-3,3,3-trifluoro-2-hydroxy-2-methylpropionamide. Organic Process Research & Development,2002,6(4):497-504.

[27] Ewert C,Lutz-Wahl S,Fischer L. Enantioselective conversion of alpha-arylnitriles by Klebsiella oxytoca. Tetrahedron-Asymmetry,2008,19(22):2573-2578.

[28] Snell D,Colby J. Enantioselective hydrolysis of racemic ibuprofen amide to S-(+)-ibuprofen by Rhodococcus AJ270. Enzyme and Microbial Technology,1999,24(3-4):160-163.

[29] Eichhorn E,Roduit J P,Shaw N,et al. Preparation of (S)-piperazine-2-carboxylic acid, (R)-piperazine-2-carboxylic acid, and (S)-piperidine-2-carboxylic acid by kinetic resolution of the corresponding racemic carboxamides with stereoselective amidases in whole bacterial cells. Tetrahedron-Asymmetry,1997,8(15):2533-2536.

[30] Layh N,Stolz A,Bohme J,et al. Enantioselective hydrolysis of racemic naproxen nitrile and naproxen amide to S-naproxen by new bacterial isolates. Journal of Biotechnology,1994,33(2):175-182.

[31] Komeda H,Asano Y. Gene cloning, nucleotide sequencing, and purification and characterization of the D-stereospecific amino-acid amidase from Ochrobactrum anthropi SV3. European Journal of Biochemistry,2000,267(7):2028-2035.

[32] Vandentweel W J J,Vandooren T J G M,Dejonge P H,et al. Ochrobactrum Anthropi NCIMB 40321 - a new biocatalyst with broad-spectrum L-specific amidase activity. Applied Microbiology and Biotechnology,1993,39(3):296-300.

[33] Hongpattarakere T,Komeda H,Asano Y. Purification, characterization, gene cloning and nucleotide sequencing of D-stereospecific amino acid amidase from soil bacterium: Delftia acidovorans. Journal of Industrial Microbiology & Biotechnology,2005,32(11-12):567-576.

[34] Suzuki Y,Ohta H. Identification of a thermostable and enantio selective amidase from the thermoacidophilic archaeon Sulfolobus tokodaii strain 7. Protein Expression and Purification,2006,45(2):368-373.

[35] Wegman M A,Heinemann U,Rantwijk F,et al. Hydrolysis of D,L-phenylglycine nitrile by new bacterial cultures. Journal of Molecular Catalysis B-Enzymatic,2001,11(4-6):249-253.

[36] d’Abusco A S,Ammendola S,Scandurra R,et al. Molecular and biochemical characterization of the recombinant amidase from hyperthermophilic archaeon Sulfolobus solfataricus. Extremophiles,2001,5(3):183-192.

[37] Hensel M,Lutz-Wahl S,Fischer L. Stereoselective hydration of (R, S)-phenylglycine nitrile by new whole cell biocatalysts. Tetrahedron-Asymmetry,2002,13(24):2629-2633.

[38] Komeda H,Harada H,Washika S,et al. A novel R-stereoselective amidase from Pseudomonas sp. MCI3434 acting on piperazine-2-tert-butylcarboxamide. European Journal of Biochemistry,2004,271(8):1580-1590.

[39] Komeda H,Harada H,Washika S,et al. S-Stereoselective piperazine-2-tert-butylcarboxamide hydrolase from Pseudomonas azotoformans IAM 1603 is a novel L-amino acid amidase. European Journal of Biochemistry,2004,271(8):1465-1475.

[40] 吕志堂, 徐长源, 郭晓东,等.假单胞菌 X1 的培养及哌嗪-2-甲酰胺的拆分条件优化.中国医药工业杂志,2009(005):341-344. Lü Z T,Xu C Y,Guo X D,et al. Optimization of culture conditions of pseudomonas sp. X1 and resolution of piperazine-2-carboxaminde. Chinese Journal of Pharmaceuticals,2009(005):341-344.

[41] Komeda H,Asano Y. A novel D-stereoselective amino acid amidase from Brevibacterium iodinum: gene cloning, expression and characterization. Enzyme and Microbial Technology,2008,43(3):276-283.

[42] Baek D H,Kwon S J,Hong S P,et al. Characterization of a thermostable D-stereospecific alanine amidase from Brevibacillus borstelensis BCS-1. Applied and Environmental Microbiology,2003,69(2):980-986.

[43] Krieg L,Ansorge-Schumacher M B,Kula M.R. Screening for amidases: Isolation and characterization of a novel D-amidase from Variovorax paradoxus. Advanced Synthesis & Catalysis,2002,344(9):965-973.

[44] Bianchi D,Battistel E,Cesti P,et al. Substrate-specificity and stereoselectivity of hydrolytic enzymes from Brevibacterium imperiale B222. Applied Microbiology and Biotechnology,1993,40(1):53-56.

[45] Bauer R,Hirrlinger B,Layh N,et al. Enantioselective hydrolysis of racemic 2-phenylpropionitrile and other (R,S)-2-arylpropionitriles by a new bacterial isolate, Agrobacterium tumefaciens Strain D3. Applied Microbiology and Biotechnology,1994,42(1):1-7.

[46] Komeda H,Hariyama N,Asano Y. L-Stereoselective amino acid amidase with broad substrate specificity from Brevundimonas diminuta: characterization of a new member of the leucine aminopeptidase family. Applied Microbiology and Biotechnology,2006,70(4):412-421.

[47] Makhongela H S,Glowacka A E,Agarkar V B,et al. A novel thermostable nitrilase superfamily amidase from Geobacillus pallidus showing acyl transfer activity. Applied Microbiology and Biotechnology,2007,75(4):801-811.

[48] Doran J P,Duggan P,Masterson M,et al. Expression and purification of a recombinant enantioselective amidase. Protein Expr Purif,2005,40(1):190-196.

[49] Egorova K,Trauthwein H,Verseck S,et al. Purification and properties of an enantioselective and thermoactive amidase from the thermophilic actinomycete Pseudonocardia thermophila. Applied Microbiology and Biotechnology,2004,65(1):38-45.

[50] Mayaux J F,Cerbelaud E,Soubrier F,et al. Purification, cloning, and primary structure of an enantiomer-selective amidase from Brevibacterium sp. Strain R312 - structural evidence for genetic coupling with nitrile hydratase. Journal of Bacteriology,1990,172(12):6764-6773.

[51] Wang M X,Feng G Q. Enzymatic synthesis of optically active 2-methyl- and 2, 2-dimethylcyclopropanecarboxylic acids and their derivatives. Journal of Molecular Catalysis B-Enzymatic,2002,18(4-6):267-272.

[52] Wu Z L,Li Z Y. Biocatalytic asymmetric hydrolysis of (+/-)-beta-hydroxy nitriles by Rhodococcus sp CGMCC 0497. Journal of Molecular Catalysis B-Enzymatic,2003,22(1-2):105-112.

[53] Banerjee A,Sharma R,Banerjee U C. The nitrile-degrading enzymes: current status and future prospects. Applied Microbiology and Biotechnology,2002,60(1-2):33-44.

[54] Patel R N. Biocatalysis: Synthesis of key Intermediates for development of pharmaceuticals. Acs Catalysis,2011,1(9):1056-1074.

[1] 曾杰. 优质L-天冬酰胺酶的开发与应用及重组表达研究进展[J]. 中国生物工程杂志, 2017, 37(11): 123-131.
[2] 马博远, 张光明, 王航瑶, 许洪章, 彭猛, 王园园. 光照混菌培养应用研究进展[J]. 中国生物工程杂志, 2016, 36(8): 113-122.
[3] 康立, 牛延宁, 张艳芳, 孙仁强, 成楠, 黄静, 金明飞, 常忠义, 鲁伟, 步国建, 高红亮. 蛋白质谷氨酰胺酶的发酵及初步分离和应用研究[J]. 中国生物工程杂志, 2014, 34(5): 54-59.
[4] 汪正华, 朱蓓霖, 赵云, 周杰, 吴自荣, 黄静. 蛋白质谷氨酰胺酶基因的合成表达及性质研究[J]. 中国生物工程杂志, 2012, 32(11): 55-60.
[5] 汪正华, 朱蓓霖, 赵云, 周杰, 吴自荣, 黄静. 蛋白质谷氨酰胺酶基因的合成表达及性质研究[J]. 中国生物工程杂志, 2012, 32(11): 55-60.
[6] 陈红干, 倪晔, 孙志浩. 高产(+)γ-内酰胺酶菌株的筛选与发酵产酶研究[J]. 中国生物工程杂志, 2012, 32(09): 41-47.
[7] 柳菁, 宇丽, 许超. 间充质干细胞向软骨细胞表型分化的研究进展[J]. 中国生物工程杂志, 2011, 31(06): 129-134.
[8] 许明飞 谢丽萍 杨涛 朱春宝 朱宝泉 胡又佳. β-内酰胺酶抑制多肽的串联表达及抑制活性研究[J]. 中国生物工程杂志, 2009, 29(09): 0-0.
[9] 孔路科,郭建巍,马骢,杨林西,魏杰,吴素香. 质粒介导的AmpC β-内酰胺酶共有抗原表位的预测及原核表达[J]. 中国生物工程杂志, 2008, 28(9): 32-38.
[10] 王莉, 常忠义, 李平作. 转谷氨酰胺酶基因在大肠杆菌中的克隆表达[J]. 中国生物工程杂志, 2004, 24(11): 55-59.
[11] 刘晓秋, 钱世钧. 医学研究中的转谷氨酰胺酶[J]. 中国生物工程杂志, 2003, 23(11): 33-36.
[12] 孟广震. 迎接生物技术的第三个浪潮[J]. 中国生物工程杂志, 2002, 22(4): 1-5.
[13] 赵卫东, 刘进元. 烟草野火病菌的分子遗传[J]. 中国生物工程杂志, 1997, 17(2): 43-46.