Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2012, Vol. 32 Issue (05): 107-112    
综述     
大麦基因组和分子育种研究进展
张文静, 厉永鹏, 李集临, 张延明
哈尔滨师范大学生命科学与技术学院 黑龙江省分子细胞遗传与遗传育种重点实验室 哈尔滨 150025
Advances in Barley Genome and Molecular Breeding
ZHANG Wen-jing, LI Yong-peng, LI Ji-lin, ZHANG Yan-ming
Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province,College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
 全文: PDF(388 KB)   HTML
摘要:

大麦(Hordeum vulgare L.)是世界上重要的谷类作物之一,其二倍体特性使其成为麦类作物基因组研究的重要材料。随着大量分子标记图谱、BACs文库、突变集合和DNA阵列技术的应用,大麦基因组测序工作已不断深入,越来越多的大麦基因组信息使综合分析大麦基因组结构和功能,了解基因表达网络同重要农艺性状之间的关系成为可能。就大麦基因组研究内容,如ESTs系统、物理图谱的构建、功能基因组学研究和大麦分子育种研究作简要综述,为进一步阐述大麦基因组结构和功能特性,提高大麦分子育种能力提供理论依据。

关键词: 大麦基因组分子标记标记辅助选择    
Abstract:

Barley is one of the major cereal crops in the world. Due to its diploid nature, barley can be considered an important material for Triticeae genomic studies. With the application of techniques and methods employed in genomics, such as a large number of mapped molecular markers, BAC libraries, mutant collections and DNA arrays, the sequencing of barley genome has deepen increasingly. More and more information about the barley genome pave the way for a comprehensive analysis of structural and functional genomics of barley as well as understanding of gene expression networks linked to agronomically important traits. Progress in genomics and molecular breeding of barley were summarized, including ESTs system, physical map construction, functional genomics and barley marker-assisted selection, which provides a theoretical basis for further improving molecular breeding and expounding the structural and functional performance of barley genome.

Key words: Barley    Genome    Molecular marker    Marker-assisted selection
收稿日期: 2011-11-24 出版日期: 2012-05-25
ZTFLH:  Q37  
基金资助:

国家"863"计划(2011AA10010205)、黑龙江省博士后基金(LBH-Z10034)、黑龙江省高校科技创新团队研究计划、哈尔滨师范大学科技创新团队研究计划(KJTD-2011-2)资助项目

通讯作者: 张延明     E-mail: blueright@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

张文静, 厉永鹏, 李集临, 张延明. 大麦基因组和分子育种研究进展[J]. 中国生物工程杂志, 2012, 32(05): 107-112.

ZHANG Wen-jing, LI Yong-peng, LI Ji-lin, ZHANG Yan-ming. Advances in Barley Genome and Molecular Breeding. China Biotechnology, 2012, 32(05): 107-112.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2012/V32/I05/107


[1] Varshney R K, Hoisington D A, Tyagi A K. Advances in cereal genomics and applications in crop breeding.Trends in Biotechnology, 2006,24(11): 490-499.

[2] Bennett M D, Smith J B. Nuclear DNA amounts in angiosperms. Philos Trans R Soc Lond B Biol Sci, 1976, 274:227-274.

[3] Shendure J, Ji H. Next-generation DNA sequencing.Nat Biotechno, 2008, 12(6): 1135-1145.

[4] Wicker T, Schlagenhauf E, Graner A, et al.454 sequencing put to the test using the complex genome of barley. BMC Genomics, 2006, 7:275.

[5] Wicker T, Narechania A, Sabot F,et al. Low-pass shotgun sequencing of the barley genome facilitates rapid identification of genes, conserved non-coding sequences and novel repeats. BMC Genomics, 2008, 9:518.

[6] Stein N, Prasad M,Scholz U, et al. A 1,000-loci transcript map of the barley genome: new anchoring points for integrative grass genomics. Theoretical and Applied Genetics, 2007, 114(5):823-839.

[7] Hearnden P R, Eckermann P J, McMichael G L, et al. A genetic map of 1,000 SSR and DArTmarkers in a wide barley cross.Theoretical and Applied Genetics,2007,115 (3):383-391.

[8] Sreenivasulu N, Altschmied L, Radchuk V, et al. Transcript profiles and deduced changes of metabolic pathways in maternal and filial tissues of developing barley grains.The Plant Journal, 2004, 37 (4) :539-553.

[9] Close T J, Wanamaker S I, Caldo R A, et al. A new resource for cereal genomics: 22K barley genechip comes of age.Plant Physiology, 2004,134(3):960-968.

[10] Leymarie J, Bruneaux E, Gibot-Leclerc S, et al. Identification of transcripts potentially involved in barleyseed germination and dormancy using cDNA-AFLP. Journal of Experimental Botany, 2007,58(3):425-437.

[11] Ibrahim A F M, Hedley P E, Cardle L,et al. A comparative analysis of transcript abundance using SAGE and Affymetrix arrays. Functional & Integrative Genomics, 2005,5(3):163-174.

[12] Strickert M, Sreenivasulu N, Usadel B, et al. Correlation-maximizing surrogate gene space for visual mining of gene expression patterns in developing barley endosperm tissue. BMC Bioinformatics,2007, 8(165):1-11.

[13] Luo Z W, Potokina E, Druka A, et al. SFP genotyping from affymetrix arrays is robust but largely detects cis-acting expression regulators. Genetics, 2007, 176(2):789-800.

[14] Ozturk Z N, Talam'e V, Deyholos M, et al. Monitoring large-scale changes in transcript abundance in drought- and salt-stressed barley. Plant Molecular Biology, 2002,48(5-6):551-573.

[15] Caldo R A, Nettleton D, Wise R P. Interaction dependent gene expression in Mla-specified response to barley powdery mildew. Plant Cell, 2004, 16(9):2514-2528.

[16] Shen L, Gong J, Caldo R A, et al. BarleyBase—an expression profiling database for plant genomics. Nucleic Acids Research,2005,33: D614-D618.

[17] Drader T, Johnson K, Brueggeman R,et al. Genetic and physical mapping of a high recombination region on chromosome 7H(1) in barley. Theor Appl Genet, 2009, 118:811-820.

[18] Schulte D, Close T J, Graner A,et al.The international barley sequencing consortium—at the threshold of efficient access to the barley genome.Plant Physiology,2009,149:142-147.

[19] Wicker T, Sabot F, Hua-Van A, et al. A unified classification system for eukaryotic transposable elements. Nat Rev Genet, 2007, 8: 973-982.

[20] Wendl M C, Waterston R H. Generalized gap model for bacterial artificial chromosome clone fingerprint mapping and shotgun sequencing. Genome Res, 2002, 12: 1943-1949.

[21] Islam A K M R, Shepherd K W, Sparrow D H B. Isolation and characterization of euplasmic wheat-barley chromosome addition lines. Heredity, 1981, 46:161-174.

[22] Cho S, Garvin D F, Muehlbauer G J. Transcriptome analysis and physical mapping of barley genes in wheatbarley chromosome addition lines. Genetics, 2006, 172(2):1277-1285.

[23] Masoudi-Nejad A, EndoT R, Waugh R. et al. An alternative to radiation hybrid mapping for large-scale genome analysis in barley. Molecular Genetics and Genomics, 2005, 274(6):589-594.

[24] Isidore E, Scherrer B, Bellec A, et al. Direct targeting and rapid isolation of BAC clones spanning a defined chromosome region. Functional&Integrative Genomics, 2005,5(2):97-103.

[25] Stephens J L, Brown S E, Lapitan N L V, et al. Physical mapping of barley genes using an ultrasensitive fluorescence in situ hybridization technique. Genome, 2004, 47(1):179-189.

[26] Künzel G, Korzun L, Meister A. Cytologically integrated physical restriction fragment length polymorphism maps for the barley genome based on translocation breakpoints. Genetics, 2000, 154(1):397-412.

[27] Varshney R K, Grosse I, Hähnel U, et al. Genetic mapping and BAC assignment of EST-derived SSR markers shows non-uniform distribution of genes in the barley genome.Theoretical and Applied Genetics,2006,113(2):239-250.

[28] Stein N. Triticeae genomics: advances in sequence analysis of large genome cereal crops. Chromosome Research, 2007, 15(1):21-31.

[29] Madishetty K, Condamine P, Svensson J T, et al. An improved method to identify BAC clones using pooled overgos. Nucleic Acids Res, 2007, 35:45.

[30] Waugh R, Leader D J, McCallum N, et al. Harvesting the potential of induced biological diversity.Trends in Plant Science, 2006, 11(2):71-79.

[31] Wenzl P, Li H, Carling J,et al. A high-density consensus map of barley linking DArT markers to SSR, RFLP and STS loci and agricultural traits. BMC Genomics, 2006, 7:206.

[32] Caldwell D G,McCallum N, Shaw P, et al. "A structured mutant population for forward and reverse genetics in Barley (Hordeum vulgare L.)".The Plant Journal, 2004, 40(1):143-150.

[33] Koprek T, McElroy D, Louwerse J, et al. An efficient method for dispersing Ds elements in the barley genome as a tool for determining gene function. The Plant Journal, 2000, 24(2):253-263.

[34] Ayliffe M A,Pallotta M, Langridge P,et al.A barley activation tagging system. Plant Molecular Biology, 2007, 64(3):329-347.

[35] Hensel G,Valkov V,Middlefell-Williams J,et al.Efficient generation of transgenic barley: the way forward to modulate plant-microbe interactions. Journal of Plant Physiology, 2008, 165(1):71-82.

[36] Kumlehn J,Serazetdinova L,Hensel G,et al. "Genetic transformation of barley (Hordeum vulgare L.) via infection of androgenetic pollen cultures with Agrobacterium tumefaciens".Plant Biotechnology Journal,2006,4(2):251-261.

[37] Kleinhofs A,Kilian A, Saghai Maroof M A, et al. A molecular, isozyme and morphological map of the barley (Hordeum vulgare) genome.Theoretical and Applied Genetics,1993,86(6):705-712.

[38] Friedt W, Ordon F. Molecular markers for gene pyramiding and resistance breeding in barley.Genomics-Assisted Crop Improvement, 2008, 2: 498.

[39] Thiel T, Michalek W, Varshney R K, et al. Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theoretical and Applied Genetics, 2003, 106(3):411-422.

[40] Kota R, Wolf M, Michalek W, et al. Application of denaturing high-performance liquid chromatography for mapping of single nucleotide polymorphisms in barley (Hordeum vulgare L.). Genome, 2001, 44(4):523-528.

[41] Kota R,Rudd S,Facius A, et al. Snipping polymorphisms from large EST collections in barley (Hordeum vulgare L.).Molecular Genetics and Genomics, 2003, 270(1):24-33.

[42] Thiel T, Kota R, Grosse I, et al.SNP2CAPS: a SNP and INDEL analysis tool for CAPS marker development. Nucleic Acids Research, 2004, 32(1):e5.

[43] Rostoks N, Ramsay L, MacKenzie K, et al. Recent history of artificial outcrossing facilitates whole-genome association mapping in elite inbred crop varietes. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(49):18656-18661.

[44] Wenzl P,Carling J,Kudrna D,et al. Diversity Arrays Technology (DArT) for whole-genome profiling of barley. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(26):9915-9920.

[45] Rostoks N, Ramsay L, MacKenzie K, et al. Recent history of artificial outcrossing facilitates whole-genome association mapping in elite inbred crop varietes. Proceedings of the National Academy of Sciences of the United States of America,2006,103(49):18656-18661.

[46] Steffenson B J, Olivera P, Roy J K, et al. A walk on the wild side: mining wild wheatand barley collections for rust resistance genes. Australian Journal of Agricultural Research, 2007,58(6):532-544.

[47] Wenzl P,Li H, Carling J, et al. A high-density consensus map of barley linking DArT markers to SSR, RFLP and STS loci and agricultural traits. BMC Genomics, 2006, 7:1-22.

[48] Close T J, Wanamaker S I, Caldo R A, et al. A new resource for cereal genomics: 22K barley genechip comes of age. Plant Physiology, 2004, 134(3):960-968.

[49] Potokina E, Druka A, Luo Z, et al. Gene expression quantitative trait locus analysis of 16 000 barley genes reveals a complex pattern of genomewide transcriptional regulation. The Plant Journal, 2008, 53(1):90-101.

[50] Luo Z W, Potokina E, Druka A, et al. SFP genotyping from affymetrix arrays is robust but largely detects cis-acting expression regulators. Genetics, 2007, 176(2):789-800.

[51] Graner A, Streng S, Kellermann A, et al. Molecular mapping and genetic fine-structure of the rym5 locus encoding resistance to different strains of the barley yellow mosaic virus complex. Theoretical and Applied Genetics, 1999, 98(2):285-290.

[52] Stein N, Perovic D,Kumlehn J, et al. The eukaryotic translation initiation factor 4E confers multiallelic recessive Bymovirus resistance in Hordeum vulgare (L.). The Plant Journal, 2005, 42(6):912-922.

[53] Mammadov J A, Brooks W S, Griffey C A, et al. Validating molecular markers for barley leaf rust resistance genes Rph5 and Rph7. Plant Breeding, 2007, 126(5):458-463.

[54] Rae S J, Macaulay M, Ramsay L, et al. Molecular barley breeding.Euphytica,2007,158(3):295-303.

[55] Hammer G, Cooper M, Tardieu F, et al. Models for navigating biological complexity in breeding improved crop plants.Trends in Plant Science, 2006,11(12):587-593.

[1] 陈亚超,李楠楠,刘子迪,胡冰,李春. 源于甘草内生菌的甘草酸合成相关功能基因的宏基因组挖掘*[J]. 中国生物工程杂志, 2021, 41(9): 37-47.
[2] 王晓洁,孟凡强,周立邦,吕凤霞,别小妹,赵海珍,陆兆新. 利用基因组改组技术提高短杆菌素产量及其培养条件优化*[J]. 中国生物工程杂志, 2021, 41(8): 42-51.
[3] 杨梦冰,江易林,祝蕾,安学丽,万向元. CRISPR/Cas植物基因组编辑技术及其在玉米中的应用*[J]. 中国生物工程杂志, 2021, 41(12): 4-12.
[4] 殷芳冰,王成,龙艳,董振营,万向元. 玉米雌穗性状遗传分析与形成机制*[J]. 中国生物工程杂志, 2021, 41(12): 30-46.
[5] 秦文萱,刘鑫,龙艳,董振营,万向元. 玉米叶夹角形成的遗传基础与分子机制解析*[J]. 中国生物工程杂志, 2021, 41(12): 74-87.
[6] 王锐璞,董振营,高悦欣,龙艳,万向元. 玉米籽粒淀粉含量遗传基础与调控机制*[J]. 中国生物工程杂志, 2021, 41(12): 47-60.
[7] 马雅杰,高悦欣,李依萍,龙艳,董振营,万向元. 玉米株高和穗位高的遗传基础与分子机制*[J]. 中国生物工程杂志, 2021, 41(12): 61-73.
[8] 王彦博,魏佳,龙艳,董振营,万向元. 玉米雄穗性状遗传结构与形成分子机制*[J]. 中国生物工程杂志, 2021, 41(12): 88-102.
[9] 姜吉喆, 潘航, 乐敏, 章乐. 基于比较基因组学方法的世界范围的犬布鲁氏菌系统发育群研究 *[J]. 中国生物工程杂志, 2020, 40(3): 38-47.
[10] 程子昭,陈楚楚,应磊,李校堃,黄志锋. 冠状病毒基因组特征及感染特点比较*[J]. 中国生物工程杂志, 2020, 40(11): 56-66.
[11] 陈军,郑华军,刘亚铭,赵国屏,秦松. 雨生红球藻低覆盖度基因组草图分析 *[J]. 中国生物工程杂志, 2018, 38(7): 21-28.
[12] 唐存多,史红玲,马越,丁朋举,许建和,阚云超,姚伦广. 新型R-扁桃酸脱氢酶的基因挖掘及表达鉴定 *[J]. 中国生物工程杂志, 2018, 38(2): 30-37.
[13] 付理文, 张宇, 依含, 李雪, 朱乃硕. Taqman多重实时荧光PCR同步定量检测6种动物源性成分方法的建立[J]. 中国生物工程杂志, 2017, 37(9): 48-59.
[14] 宋佳雯, 田苏, 张玉如, 王志珍, 常忠义, 高红亮, 步国建, 金明飞. 基因组重排筛选高产谷氨酰胺转胺酶菌株[J]. 中国生物工程杂志, 2017, 37(9): 105-111.
[15] 徐媛媛, 俞翰炳, 吴飞华, 吴晓梅. 基因组时代林木抗病分子机理研究的新进展[J]. 中国生物工程杂志, 2017, 37(6): 114-123.