
细胞固定化方法制备微藻光电极的研究
Characterization of the Photoelectrode Based on the Immobilization of Microalgae
通过将微藻细胞固定在平面多孔碳纸上,制备微藻光电极,并在三电极体系电解液中加入电子介体进行测试,可产生与光照同步的光电流响应。考察了不同固定化方法、不同微藻及不同电子介体的光电流响应,结果表明硅溶胶-凝胶法制备的光电极光电流响应最佳,且对于亚心形四爿藻、金藻、莱茵衣藻、蛋白核小球藻、聚球藻等5种微藻都适用,表明该制备方法对不同微藻具有较好的通用性。电子介体的研究表明苯醌及其衍生物由于氧还电位较高,具有较好的阳极光电流响应特性,而甲基紫精氧还电位较低,具有较好的阴极光电流响应。
The microalgae photoelectrode prepared by immobilizing microalgae on the porous carbon paper displayed light-dependent electrogenic activity with electron mediators in a three-electrode system. The effect of different immobilization methods, diverse genera of microalgae and different electron mediators on photocurrent responses were investigated. The results showed that microalgae immobilized on the anode via silica sol-gel encapsulation exhibited the best photocurrent response. The diverse genera of microalgae including eukaryotic alga (Tetraselmis subcordiformis, Chlorella pyrenoidosa, Chlamydomonas reinhardtii CC 124, Isochrysis zhanjiangensis) and prokaryon alga (Synechococcus sp. PCC 7942) had similar response, demonstrating that the electrons from photosynthetic electron transfer chain of diverse genera of microalgae could be transferred to the electrode via exogenous artificial electron mediator. Benzoquinone and its derivatives as the electron mediator had anodic photocurrent response due to high redox potential, while methyl viologen exhibited low cathodic photocurrent response because of its low redox potential.
微藻 / 硅溶胶-凝胶 / 固定化 / 光合电子传递 {{custom_keyword}} /
Microalgae / Silicon sol-gel / Immobilization / Photoinduced electron transfer {{custom_keyword}} /
[1] Flexer V, Mano N. From dynamic measurements of photosynthesis in a living plant to sunlight transformation into electricity. Anal Chem, 2010, 82 (4):1444-1449.
[2] Fu C C, Su C H, Hung T C, et al. Effects of biomass weight and light intensity on the performance of photosynthetic microbial fuel cells with Spirulina platensis. Bioresour Technol, 2009, 100(18):4183-4186.
[3] Torimura M, Miki A, Wadano A. Electrochemical investigation of cyanobacteria Synechococcus sp. PCC7942-catalyzed photoreduction of exogenous quinones and photoelectrochemical oxidation of water. J Electroanal Chem, 2001, 496(1-2):21-28.
[4] Tsujimura S, Wadano A, Kano K, et al. Photosynthetic bioelectrochemical cell utilizing cyanobacteria and water-generating oxidase. Enzyme Microb Tech, 2001, 29(4-5):225-231.
[5] Cao X X, Huang X, Liang P, et al. A completely anoxic microbial fuel cell using a photobiocathode for cathodic carbon dioxide reduction. Energy Environ Sci, 2009, 2(5):498-501.
[6] Kasuno M, Torimura M, Tsukatani Y, et al. Characterization of the photoinduced electron transfer reaction from the photosynthetic system in Rhodobacter sphaeroides to an exogenous electron acceptor. J Electroanal Chem, 2009, 636(1-2):101-106.
[7] Sridharan A, Muthuswamy J, Labelle J T,et al. Immobilization of functional light antenna structures derived from the filamentous green bacterium Chloroflexus aurantiacus. Langmuir, 2008, 24(15):8078-8089.
[8] Okano M, Iida T, Shinohara H, et al. Water photolysis by a photoelectrochemical cell using an immobilized choroloplasts-methyl viologen system. Agric Biol Chem, 1984, 48(8):1977-1983.
[9] Lam K B.Irwin E F, Healy K E, et al. Bioelectrocatalytic self-assembled thylakoids for micro-power and sensing applications. Sensor Actuat B-Chem, 2006, 117(2):480-487.
[10] Ahmed J, Park W, Kim S. Photoelectric activity of thylakoid layer formed on gold via aminoalkanethiol self-Assembled monolayers. B Kor Chem Soc, 2009, 30(10): 2195-2196.
[11] Faulkner C J, Lees S, Ciesielski P N. Rapid assembly of photosystem I monolayers on gold electrodes. Langmuir, 2008, 24(16):8409-8412.
[12] Amako K, Yanai H, Ikeda T, et al. Dimethylbenzoquinone-mediated photoelectrochemical oxidation of water at a carbon paste electrode coated with photosystem II membranes. J Electroanal Chem, 1993, 362(1-2):71-77.
[13] Ikeda T, Senda M, Shiraishi T, et al. Electrocatalytic photolysis of water at photosystem II-modified carbon paste electrode containing dimethylbenzoquinone. Chem Lett, 1989, 5:913-916.
[14] Badura A, Esper B, Ataka K, et al. Light-driven water splitting for (bio-)hydrogen production: photosystem II as the central part of a bioelectrochemical device. Photochem Photobiol, 2006, 82(5):1385-1390.
[15] Strik D, Timmers R A, Helder M, et al. Microbial solar cells: applying photosynthetic and electrochemically active organisms. Trends Biotechnol, 2011, 29(1):41-49.
[16] Rosenbaum M, He Z, Angenent L. Light energy to bioelectricity: photosynthetic microbial fuel cells. Curr Opin Biotechnol, 2010, 21(3):259-264.
[17] Meunier C F, Yang X Y, Rooke J C, et al. Biofuel cells based on the immobilization of photosynthetically active bioentities. Chemcatchem, 2011, 3(3):476-488.
[18] Schroder U, Rosenbaum M. Photomicrobial solar and fuel cells. Electroanal, 2010, 22, (7-8):844-855.
[19] 刘远, 陈兆安, 陆洪斌, 等. 亚心形扁藻培养基的优化及光合特性.过程工程学报, 2007, 7(6):1197-1201. Liu Y, Chen Z A, Lu H B, et al. Optimization of culture medium and photosynthetic characteristics of platymonas subcordiformis.Chin J Process Eng, 2007, 7(6):1197-1201.
[20] 陈兆安, 吕艳霞,吴佩春等. 一种导电性微滤膜及其制备方法: 中国, 201110066253.5. Chen Z A, Lv Y X, Wu P C, et al. Preparation of conductive microfiltration membrane: China, 201110066253.5.
[21] Fiedler D, Hager U, Franke H, et al. Algae biocers: astaxanthin formation in sol-gel immobilized living microalgae. J Mater Chem, 2007, 17 (3):261-266.
[22] Soltmann U, Bottcher H. Utilization of sol-gel ceramics for the immobilization of living microorganisms. J Sol-Gel Sci Techn, 2008, 48 (1-2):66-72.
[23] Badura A, Kothe T, Schuhmann W, et al. Wiring photosynthetic enzymes to electrodes. Energy Environ. Sci., 2011, 4: 3263-3274
国家"973"计划(2009CB220004)、国家自然科学基金(20806081)、中科院知识创新工程重要方向 (KSCX2-YW-G-073,KSCX2-YW-373-2,KGCX2-YW-223)资助项目
/
〈 |
|
〉 |