
tRNase Z核酸内切酶的研究进展
tRNase Z’s Research Progress
tRNase Z是一种核酸内切酶,许多细菌、大多数真核生物以及所有的古细菌的tRNA3'末端加工过程都是由核酸内切酶tRNase Z催化的。tRNase Z能催化缺乏CCA的tRNA前体生成末尾带有核苷酸识别的3'-OH和5'磷酸尾巴的成熟tRNA。这对于CCA序列的添加、tRNA的氨酰化和蛋白质的合成十分重要。tRNase Z属于metallo-β-lactamases(MBL)超家族,存在短(tRNase ZS) 和长(tRNase ZL)两种形式,具有tRNA 3'末端加工、引导定位蛋白、加工rRNA、与Rex2P的相互作用、调节细胞分化与分裂等功能。预期对tRNaseZ的功能和属性不断深入研究将会对AIDS和前列腺癌的治疗具有潜在和实际的推动作用。
tRNase Z is an endonuclease that catalyzes tRNA 3'-end processing in many bacteria, most eukaryotes and all archaea. tRNase Z generates a mature tRNA ending with the 3'-OH of the discriminator nucleotide and a trailer sequence with a 5'-phosphate from CCA-less tRNA precursors, which is absolutely essential for the addition of the CCA sequence, tRNA aminoacylation and protein synthesis. tRNase Z enzymes belong to the superfamily of metallo-β-lactamases. tRNase Z exists the short (tRNase ZS) and long (tRNase ZL) forms. tRNase Z has many functions, such as RNA 3'-end processing, guiding the positioning of protein, rRNA-processing, complementation with the REX2 gene, regulation of cell proliferation and differentiation etc. Further analysis of the function and properties of tRNase Z will play a potential and actual role in the treatment of AIDS and prostate cancer in the coming years.
tRNase Z / metallo-&beta / -lactamases(MBL)超家族 / 3&rsquo / -CCA / ELAC2 {{custom_keyword}} /
tRNase Z / Metallo-β-lactamases(MBL)superfamily / 3'-CCA / ELAC2 {{custom_keyword}} /
[1] Hopper A K, Phizicky E M. tRNA transfers to the limelight. Genes Dev, 2003,17(2):162-180.
[2] María Ceballos,Agustín Vioque. tRNase Z. Protein & Peptide Letters, 2007,14(2):135-143.
[3] Lijuan Fan, Zhikang Wang, Jinyu Liu, et al. A survey of green plant tRNA 3’-end processing enzyme tRNase Zs, homologs of the candidate prostate cancer susceptibility protein ELAC2. BMC Evolutionary Biology,2011,11:219B.
[4] Spath B, Canino G, Marchfelder A. tRNase Z: the end is not in sight. Cell Mol Life Sci, 2007,64:2404-2412.
[5] Schilling O, Spath B, Kostelecky B, et al. Exosite modules guide substrate recognition in the ZiPD/ElaC protein family. J Biol Chem, 2005, 280:17857-17862.
[6] Canino G, Bocian E, Barbezier N, et al. Arabidopsis encodes four tRNase Z enzymes. Plant Physiol,2009, 150:1491-1502.
[7] Tavtigian S V, Simard J, Teng D H, et al. A candidate prostate cancer susceptibility gene at chromosome 17p. Nat Genet, 2001,27:172-180.
[8] Bolhuis H, Palm P, Wende A, et al. The genome of the square archaeon Haloquadratum walsbyi: Life at the limits of water activity. BMC Genomics,2006, 7:169.
[9] Schiffer S, Rosch S, Marchfelder A.Assigning a function to a conserved group of proteins: the tRNA 3’-processing enzymes. EMBO J,2002,21:2769-2777.
[10] Vogel A, Schilling O, Späth B,et al. The tRNase Z family of proteins: physiological functions, substrate specificity and structural properties. Biol Chem,2005,386: 1253-1264.
[11] Zhao Z, Su W, Yuan S,et al. Functional conservation of tRNase ZL among Saccharomyces cerevisiae, Schizosaccharomyces pombe and humans. Biochem J, 2009, 422:483-492.
[12] de la Sierra-Gallay, Pellegrini I L, Condon O. Structural basis for substrate binding, cleavage and allostery in the tRNA maturase RNase Z. Nature,2005,433(7026):657 -661.
[13] Ishii R, Minagawa A, Takaku H, et al. Crystal structure of the tRNA 3 processing endoribonuclease tRNase Z from Thermotoga maritima. J Biol Chem, 2005, 280:14138-14144.
[14] Kostelecky B, Pohl E, Vogel A, et al. The crystal structure of the zinc phospho-diesterase from Escherichia coli provides insight into function and cooperativity of tRNase Z-family proteins. J Bacteriol, 2006, 188:1607-1614.
[15] Aravind L, An evolutionary classification of the etallo-beta-lactamase fold proteins. In Silico Biol, 1999, 1:69-91.
[16] Settele F. RNA metabolism. Regulatory RNAs and ribonucleases. Ulm University, Ulm, Germany, 2006.
[17] Eric M Phizicky, Anita K. tRNA biology charges to the front. Genes & Development,2010,24:1832-1860.
[18] Hopkinson A, Levinger L. Effects of conserved D/T loop substitutions in the pre-tRNA substrate on tRNase Z catalysis. RNA Biol, 2008, 5:104-111.
[19] Tomita K, Weiner A M J. Closely related CC- and A-adding enzymes collaborate to construct and repa the 3-terminal CCA of tRNA in synechocystissp. and deinococcus radiodurans. Biol Chem, 2002, 277:48192-48198.
[20] Minagawa A, Takaku H, Takagi M, et al. A novel endonucleolytic mechanism to generate the CCA 3' termi of tRNA molecules in Thermotoga maritima. Biol Chem,2004,279(15):15688-15697.
[21] Maraia R J, Lamichhane.T N. 3' processing of eukaryotic precursor tRNAs.WIREs RNA, 2011, 2:362-375.
[22] Dubrovsky E B, Dubrovskaya V A, Levinger L, et al. Drosophila RNase Z processes mitochondrial and nuclear pre-tRNA 3' ends in vivo. Nucleic Acids Res, 2004, 32:255-262.
[23] Takahashi M, Takadu H, Nashimoto M. Regulation of the human tRNase ZS gene expression. FEBS Lett, 2008,582:2532-2536.
[24] Pellegrini O, Nezzar J, Marchfelder A, et al. Endonucleolytic processing of CCA-less tRNA precursors by RNase Z in Bacillus subtilis. EMBO J, 2003, 22, 4534-4543.
[25] Peng W T, Robinson M D, Mnaimneh S, et al. A panoramic view of yeast noncoding RNA processing. Cell, 2003, 113:919-933.
[26] Chen Y, Beck A, Davenport C,et al. Characterization of TRZ1, a yeast homolog of the human candidate prostate cancer susceptibility gene ELAC2 encoding tRNase Z. BMC Mol Biol,2005, 6:12.
[27] Korver W, Guevara C, Chen Y,et al. The product of the candidate prostate cancer susceptibility gene ELAC2 interacts with the gamma-tubulin complex. Int J Cancer, 2003, 104:283-288.
[28] Dubrovsky E B, Dubrovskaya V A, Bilderback A L, et al. The isolation of two juvenile hormone-inducible genes in Drosophila melanogaster. Dev Biol, 2000, 224:486-495.
[29] Smith M M, Levitan D J. The Caenorhabditis elegans homolog of the putative prostate cancer susceptibility geneELAC2, hoe-1, plays a role in germline proliferation. Dev Biol, 2004,266:151-160.
[30] Noda D, Itoh S, Watanabe Y, et al. ELAC2, a putative prostate cancer susceptibility gene product, potentiates TGF-beta/Smad-induced growth arrest of prostate cells. Oncogene, 2006, 25:5591-5600.
[31] Mineri R, Pavelka N, Fernandez-Vizarra E,et al. How do human cells react to the absence of mitochondrial DNA? PloS one, 2009, 4:e5713.
[32] Takaku H, Minagawa A, Takagi M, et al. A candidate prostate cancer susceptibility gene encodes tRNA 3 processing endoribonuclease. Nucleic Acids Res, 2003, 31:2272-2278.
[33] Smith M M, Levitan D J. The Caenorhabditis elegans homolog of the putative prostate cancer susceptibility geneELAC2, hoe-1, plays a role in germline proliferation.Dev Biol, 2004, 266:151-160.
[34] Elbarbary R A, Takaku H, Uchiumi N, et al. Modulation of gene expression by human cytosolic tRNase ZL through 5'-Half-tRNA. PLoS ONE, 2009, 4(6): e5908.
[35] Yuichiro Habu, Naoko Miyano-Kurosaki, Michiko Kitano1, et al. Inhibition of HIV-1 gene expression by retroviral vector-mediated small-guide RNAs that direct specific RNA cleavage by tRNase ZL, Nucleic Acids Research, 2005,33(1):235-243.
国家自然科学基金(30970346,31172076)、中央高校基本科研业务费专项资金(GK201001004)、陕西省自然科学基金(2007C101)资助项目
/
〈 |
|
〉 |