Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2012, Vol. 32 Issue (03): 47-52    
研究报告     
DKPs对解淀粉芽孢杆菌Q-426抗菌活性物质基因表达量的影响
熊文1, 杨学敏1, 王建华3, 权春善1,2, 范圣第1,2
1. 大连民族学院生命科学学院 大连 116600;
2. 国家民委-教育部重点实验室 大连 116600;
3. 中国科学院烟台海岸带研究所 烟台 264003
Effects of DKPs on Gene Expression of the Antibacterial Substances in Bacillus amyloliquefaciens Q-426
XIONG Wen1, YANG Xue-min1, WANG Jian-hua3, QUAN Chun-shan1,2, FAN Sheng-di1,2
1. College of Life Science, Dalian Nationalities University, Dalian 116600, China;
2. Key Laboratory of State Ethnic Affairs Commission and Ministry of Education, Dalian 116600, China;
3. Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
 全文: PDF(665 KB)   HTML
摘要:

目的:解淀粉芽孢杆菌Q-426在其生长过程中能够产生芬枯草菌素、依枯草菌素、枯草杆菌素等多种脂肽类抗菌物质。利用实时荧光定量PCR的方法考察细菌群体感应信号分子二酮哌嗪类化合物(diketopiperazines, DKPs)对脂肽类抗菌物质合成的调控作用。方法:当Q-426菌进入对数生长期中期,向发酵液中加入终浓度为5 mg/L的DKPs,并继续培养至48 h,并利用实时荧光定量PCR的方法进行抗菌物质mRNA表达水平的定量分析。结果:二酮哌嗪类化合物能够抑制抗菌活性物质相关基因的表达。

关键词: 解淀粉芽孢杆菌Q-426DKPs抗菌活性    
Abstract:

Objective: Bacillus amyloliquefaciens Q-426 could produce varieties of antifungal lipopeptides during its stationary growth process, including bacillomycin D, fengycin A and B. Effects of diketopiperazines (DKPs) as signal molecules of quorum sensing (QS) on the biosynthesis of above antifungal compounds were studied through real time fluorescent quantitative polymerase chain reaction (Real-time Q-PCR). Methods: DKPs at a final concentration of 5 mg/l were added to the culture broth of strain Q-426 which was incubated at 30℃ for 12 h. After continuing cultivation for 48 h, quantitative analysis of mRNA expression levels was carried out by Real-time Q-PCR. Result: DKPs could inhibit the expression of some genes related with the biosynthesis of antifungal lipopeptides.

Key words: Bacillus amyloliquefaciens Q-426    DKPs    Antibacterial activity
收稿日期: 2011-11-28 出版日期: 2012-03-25
ZTFLH:  Q93  
通讯作者: 权春善,mikyeken@dlnu.edu.cn     E-mail: mikyeken@dlnu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

熊文, 杨学敏, 王建华, 权春善, 范圣第. DKPs对解淀粉芽孢杆菌Q-426抗菌活性物质基因表达量的影响[J]. 中国生物工程杂志, 2012, 32(03): 47-52.

XIONG Wen, YANG Xue-min, WANG Jian-hua, QUAN Chun-shan, FAN Sheng-di. Effects of DKPs on Gene Expression of the Antibacterial Substances in Bacillus amyloliquefaciens Q-426. China Biotechnology, 2012, 32(03): 47-52.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2012/V32/I03/47


[1] Bott R, Ultsch M, Kossiakoff A, et al. The three-dimensional structure of Bacillus amyloliquefaciens subtilisin at 1.8Å and an analysis of the structural consequences of peroxide inactivation. J Biol Chem, 1988, 263(16): 7895-7906.

[2] Chen X H, Koumoutsi A, Scholz R, et al. Genome analysis of Bacillus amyloliquefaciens FZB42 reveals its potential for biocontrol of plant pathogens. J Biotech, 2009, 140(1-2):27-37.

[3] Kozlovsky A, Vinokurova N G, Adanin V M, et al.Piscarinines, new polycyclic diketopiperazine alkaloids from Penicillium piscarium VKM F-691. Nat Prod Lett, 2000, 14 (5): 333-340.

[4] Yoshio H, Sumie O, Koji T, et al. Total synthesis of anti-microtubule diketopiperazine derivatives: phenylahistin and aurantiamine. J Org Chem, 2000, 65(24): 8402-8405.

[5] Holden M T G, Chhabra S R, Denys R, et al. Quorum sensing cross talk: isolation and chemical characterization of cyclic dipeptides from Pseudomonas aeruginosa and other Gram-negative bacteria. Mol Microbiol, 1999, 33(6): 1254-1266.

[6] Degrassi G, Aguilar C, Bosco M, et al. Plant growth-promoting Pseudomonas putida WCS358 produces and secretes four cyclic dipeptides: cross-talk with quorum sensing bacteria sensors. Current Microbiology, 2002, 45(4): 250-254.

[7] Wang J H, Quan C S, Qi X H, et al. Determination of diketopiperazines of Burkholderia cepacia CF-66 by gas chromatography-mass spectrometry. Anal Bioanal Chem, 2010, 396(5): 1773-1779.

[8] Girard B M, May V, Bora S H, et al. Regulation of neurotrophic peptide expression in sympathetic neurons: quantitative analysis using radioimmunoassay and real-time quantitative polymerase chain reaction. Regul Peptides, 2002, 109(1-3): 89-101.

[9] Alexandra G, Gilles F, Christiane C, et al. Tracking T cell clonotypes in complex T lymphocyte populations by real-time quantitative PCR using fluorogenic complementarity-determining region-3-specific probes. Journal of Immunological Methods, 2002, 270(2): 269-280.

[10] Khmel I A, Belik A, Zaitseva Y, et al. Quorum sensing and communication in bacteria. Moscow University Biological Sciences Bulletin, 2008, 63(1): 25-31.

[11] Nealson K H, Hastings J W. Bacterial bioluminescence: its control and ecological significance. Microbiol Rev, 1979, 43(4): 496-518.

[12] Wisniewski-Dyé F, Jones J, Chhabra S R, et al. raiIR genes are part of a quorum-sensing network controlled by CinI and CinR in Rhizobium leguminosarum. J Bacteriol, 2002, 184(6): 1957-1606.

[13] Winson M K, Camara M, Latifi A, et al. Multiple N-acyl-L-homoserine lactone signal molecules regulate production of virulence determinants and secondary metabolites in Pseudomonas aeruginosa. Proc Natl Acad Sci USA, 1995, 92(20): 9427-9431.

[14] Bainton N J, Bycroft B W, Chhabra S R, et al. A general role for the lux autoinducer in bacterial cell signaling control of antibiotic biosynthesis in Erwinia. Gene, 1992, 116(1): 87-91.

[15] Huber B, Riedel K, Hentzer M, et al. The cep quorum-sensing system of Burkholderia cepacia H111 controls biofilm formation and swarming motility. Microbiology, 2001, 147(9): 2517-2528.

[16] Elvers K T, Park S F. Quorum sensing in Campylobacter jejuni: detection of a luxS encoded signaling molecule. Microbiology, 2002, 148(5): 1475-1481.

[17] Fuqua W C, Winans S C. A LuxR-LuxI type regulatory system activates Agrobacterium Ti plasmid conjugal transfer in the presence of a plant tumour metabolite. J Bacteriol, 1994, 176(10): 2796-2806.

[1] 戈家傲,刘畅,龚建刚,刘艳琴. 抗菌环肽的研究进展 *[J]. 中国生物工程杂志, 2018, 38(11): 76-83.
[2] 巫春旭, 卢雪梅, 金小宝, 朱家勇. 天蚕素类抗菌肽分子设计研究进展[J]. 中国生物工程杂志, 2016, 36(2): 96-100.
[3] 陶思美, 郑维, 赵朋超, 周伟, 权春善, 范圣第. bmy基因敲除对解淀粉芽孢杆菌Q-426溶血性及抗菌活性的影响[J]. 中国生物工程杂志, 2014, 34(3): 56-60.
[4] 李建波, 江明锋, 王永. 藏绵羊乳腺溶菌酶基因的克隆、原核表达及抗菌活性研究[J]. 中国生物工程杂志, 2013, 33(8): 38-44.
[5] 孙力军, 王雅玲, 刘唤明, 徐德峰, 张永平, 聂芳红. 抗菌豆豉发酵菌株的筛选及其脂肽组分鉴定和特性研究[J]. 中国生物工程杂志, 2013, 33(7): 50-56.
[6] 明飞平, 杨军, 朱进美, 邝哲师, 李华周, 夏枫耿, 叶明强, 王候光, 赵祥杰, 黄志丰, 蔡海明, 施巨清, 马苗鹏, 张玲华. 5’非翻译区序列改建提高抗菌肽PR39表达[J]. 中国生物工程杂志, 2013, 33(12): 86-91.
[7] 周广麒, 马蓬勃, 刘俏, 权春善, 范圣第. 解淀粉芽孢杆菌Q-426培养基优化及抑菌活性的预测[J]. 中国生物工程杂志, 2013, 33(11): 21-26.
[8] 赵朋超, 权春善, 金黎明, 王丽娜, 范圣第. 氮源和碳源对解淀粉芽孢杆菌Q-426抗菌脂肽合成的影响[J]. 中国生物工程杂志, 2012, 32(10): 50-56.
[9] 徐灵龙 王云峰 石星明 童光志. 抗菌肽及其功能研究[J]. 中国生物工程杂志, 2007, 27(1): 115-118.
[10] 高必达. 丁香假单胞菌环式脂肽毒素的生理和分子生物学研究[J]. 中国生物工程杂志, 2000, 20(4): 55-59.
[11] 郭玉梅, 戴祝英. 昆虫抗菌肽的研究进展[J]. 中国生物工程杂志, 1996, 16(3): 24-27.
[12] 张震元. 具有类似β内酰胺作用的新型母核的新抗生素Lactivicin[J]. 中国生物工程杂志, 1987, 7(6): 65-65.