Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2012, Vol. 32 Issue (03): 32-38    
研究报告     
花生黄曲霉抗性与SR和α-微管蛋白相关性
严海燕1, 宗成志1, 翟刚1, 马生财1, 单世华2
1. 中南民族大学生命科学学院 武汉 430074;
2. 山东省花生研究所 青岛 266100
Relationship between SR,α-Tubulin and Resistance to Aspergillus Flavas in Peanut
YAN Hai-yan1, ZONG Cheng-zhi1, ZHAI Gang1, MA Sheng-cai1, SHAN Shi-hua2
1. College of life Sciences, South-Central University for Nationalities, Wuhan 430074, China;
2. Shandong Peanut Research Institute, Qingdao 266100, China
 全文: PDF(1112 KB)   HTML
摘要:

信号识别颗粒受体在分泌性蛋白合成和分泌过程中起重要作用。微管蛋白对细胞内各种生命活动都是必需的。将数据库中花生抗黄曲霉和敏感品种的两类α-微管蛋白α和α7和SR蛋白进行序列比较分析发现,在种子发育早期5,α-微管蛋白在敏感品种各有三条EST,抗性品种各有一条EST,晚期7只有抗性品种各有一条EST。SR只在抗性品种的6、7时期各有一条EST,敏感品种中没有。用荧光定量PCR方法对抗性品种KB153与敏感品种JH1012发育中不同时期的果实和部位进行差异表达分析,结果表明在果实发育早期的小果期,SR、α-微管蛋白α和α7在抗性品种中都显著上调表达,说明SR介导的内质网蛋白质运输途径与黄曲霉抗性有关。SR基因在抗性品种的子叶中的表达也上调,这与抗性品种中一些贮藏蛋白含量尤其是蛋白酶抑制剂高于敏感品种的现象一致。

关键词: 黄曲霉花生α-微管蛋白果实发育早期SR    
Abstract:

Signal recognition particle receptor (SR) is important in secretive protein synthesis and secretion process. Tubulin is essential in various life process inside cells. Comparison between proteins encoded by ESTs of α-tubulins and SR in GenBank database of Aspergillus Flavas resistance(C20R) and sensitive(TFR) cultivars reveals that for two types of α-tubulins α and α7, there are 3 ESTs each in TFR early seed developmental stage 5, there is only one EST each in C20R seed developmental stage 5 and 7. For SR, only in C20R seed developmental stage 6 and 7, there is one EST in each stage, none in any seed developmental stage of TFR. QPCR assay on expression of α-tubulins and SR in different organ and developmental stage of peanut fruit of Aspergillus Flavas resistance cultivar KB153 and sensitive cultivar JH1012 indicates that in small fruit stage of fruit early developmental stage, SR and two types of α-tubulins all up-regulated in Aspergillus Flavas resistance cultivar KB153 than sensitive cultivar JH1012. This suggests that protein transport via ER intermediated by SR is related to Aspergillus Flavas resistance. SR is also up-related in cotyledons of Aspergillus Flavas resistance cultivar KB153. This is corresponds to the higher content of storage protein including proteinase inhibitor in Aspergillus Flavas resistance cultivars.

Key words: Aspergillus flavas    Peanut    α-Tubulin    Early fruit developmental stage    SR
收稿日期: 2011-12-08 出版日期: 2012-03-25
ZTFLH:  Q5  
基金资助:

山东省花生所合作资助项目(HZY05013)

通讯作者: 严海燕,haiyuan988@yahoo.com     E-mail: haiyuan988@yahoo.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

严海燕, 宗成志, 翟刚, 马生财, 单世华. 花生黄曲霉抗性与SR和α-微管蛋白相关性[J]. 中国生物工程杂志, 2012, 32(03): 32-38.

YAN Hai-yan, ZONG Cheng-zhi, ZHAI Gang, MA Sheng-cai, SHAN Shi-hua. Relationship between SR,α-Tubulin and Resistance to Aspergillus Flavas in Peanut. China Biotechnology, 2012, 32(03): 32-38.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2012/V32/I03/32

[1] Xu Z D, Wu Q. Research progress in tubulin. J Anhui Instit Edu, 1999,2(86):73-74.
[2] Zhou H T, Xu L, Zhen W Z, et al. Research on relationship between α-tubulin and cutoplasmic male sterility in Maize. J Xianmen U(Natural Sci), 2003,42(1):107-111.
[3] Zhao J L, Zhao Z J, Zhang H. Relationship between freezing tolerance of root-tip cells and cold stability of microtubules and tubulin in cucumber. J Hebei U(Natural Sci), 2006,26(2):188-192.
[4] Yang Y, Wang B H, Li Z F, et al. The polymerization and denaturation of brain tubulin and the effect of taxol by differential scanning calorimetry. Acta Physico-Chimica Sinica, 1999,15(2):182-185.
[5] Shan S, Yan H, Li C, et al. Primary expression analysis of differential genes in peanut seed capsule with resistance to A. flavus. J Peanut Sci, 2005,34(4): 21-24.
[6] Hegde R S, Kang S. The concept of translocational regulation. J Cell Biol, 2008, 182(2): 225-232.
[7] Powers T, Walter D P. Co-translational protein targeting catalyzed by the Escherichia coli signal recognition particle and its receptor. EMBO J, 1997, 16(16): 4880-4886.
[8] Mandon E C, Jiang Y, Gilmore R. Dual recognition of the ribosome and the signal recognition particle by the SRP receptor during protein targeting to the endoplasmic reticulum. J Cell Biol, 2003, 162(4): 575-585.
[9] Herskovits A A, Seluanov A, Rajsbaum R, et al. Evidence for coupling of membrane targeting and function of the signal recognition particle (SRP) receptor FtsY. EMBO Report, 2001, 2(11): 1040-1046.
[10] Jiang Y, Cheng Z, Mandon E C, et al. An interaction between the SRP receptor and the translocon is critical during co-translational protein translocation. J Cell Biol, 2008, 180(6): 1149-1161.
[11] Zhang X, Kung S, Shan S. Demonstration of a multi-step mechanism for assembly of the SRP-SRP Receptor complex: implications for the catalytic role of SRP RNA. Journal of Mol Biol, 2008, 381(3): 581-593.
[12] Young J C, Andrews D W. The Signal recognition particle receptor alpha subunit assembles co-translationally on the endoplasmic reticulum membrane during an mRNA-encoded translation pause in vitro. EMBO J, 1996, 15(1): 172-181.
[13] Bürk J, Weiche B, Wenk M, et al. Depletion of the signal recognition particle receptor inactivates ribosomes in Escherichia coli. J Bacteriol, 2009, 191(22): 7017-7026.
[14] Ogg S C, Poritz M A, Walter P. Signal Recognition Particle receptor is important for cell growth and protein secretion in Saccharomyces cerevisiae. Mol Biol Cell, 1992, 3(8): 895-911.
[15] Maruyama N, Mun L C, Tatsuhara M, et al. Multiple vacuolar sorting determinants exist in soybean 11S globulin. Plant Cell, 2006,18(5): 1253-1273.
[16] Zong C. Study of Aspergillus flavus resistance genes in developing peanut. Wuhan: South-Central University for Nationalities, College of life sciences, 2010.
[17] Yan H Y, Ding Y, Wu Y X. Laboratory manual for molecular biology and genomic engineering. Wuhan: Wuhan University Publisher, 2009.18-41.
[18] Yan H Y, Zong C Z, Bao W Z, et al. Relationship between peanut Aspergillus flavus resistance and glycogen synthase kinase-3. Acta Agriculturae Boreali-sinica,2011,26 (5):1-4.
[19] Yan H Y, Zong C Z, Jing C H, et al. Analysis of relativity of receptor-like kinase to Aspergillus flavus resistance in peanut. Acta Agriculturae Boreali-sinica,2011,26 (4):198-201.
[20] Ji R C, Tang Z X, Li G X, et al. Determination of resistance to Aspergillus flavus and productivity of five peanut cultivars. Fujian Agri Sci Technol, 2000,(3):10-11.
[21] Zhou G Y, Liang X Q, Li Y C, et al. Evaluation and application of introduced peanut cultivars for resistance to Aspergillus flavus. J Peanut Sci, 2002,31(2):14-17.
[22] Liang X, Zhou G, Pan R. Wax and curticle of peanut seed coat in relation to infection and aflatoxin production by Aspergillus flavus. J Trop Subtrop Bot, 2003, 11(1): 11-14.
[23] Yan H Y, Zong C Z, Ma G H,et al. Relationship between ribosome protein L41 and resistance to Aspergillus flavus. Acta Agriculturae Boreali-sinica,2011,26(6):16-19.
[24] Scales T M E, Lin S, Kraus M, et al. Nonprimed and DYRK1A-primed GSK3β-phosphorylation sites on MAP1B regulate microtubule dynamics in growing axons. J Cell Sci, 2009, 122(14): 2424-2435.
[25] Wang S, Huang J, He J, et al. RPL41, a small ribosomal peptide deregulated in tumors, is essential for mitosis and centrosome integrity. Neoplasia, 2010,12(3): 284-293.
[26] Ferralli J, Ashby J, Fasler M, et al. Disruption of microtubule organization and centrosome function by expression of tobacco mosaic virus movement protein. J Virol, 2006,80(12): 5807-5821.
[27] Morrissette N S, Mitra A, Sept D, et al. Dinitroanilines bind α-tubulin to disrupt microtubules. Mol Biol of the Cell, 2004,15(4):1960-1968.
[28] Ma C, Li C, Ganesan L, et al. Mutations in α-tubulin confer dinitroaniline resistance at a cost to microtubule function. Molecular Biol Cell, 2007, 18(12):4711-4720.
[29] Migliaccio G, Nicchitta C V, Blobel G. The signal sequence receptor, unlike the Signal Recognition Particle receptor, is not essential for protein translocation. J Cell Biol, 1992, 117(1): 15-25.
[30] Friedman J R, Webster B M, Mastronarde D N, et al. ER sliding dynamics and ER-mitochondrial contacts occur on acetylated microtubules. J Cell Biol, 2010,190(3): 363-375.
[31] Liang X Q, Pan R Z, Bin J H. Research progress in mechanism of A. flavus resistance of peanut. Chinese J Oil Crop Sci, 2000,22(3):77-80.
[32] Zhou G, Liang X, Li Y, et al. Comparative study on seed coat ultrastructure of resistant and susceptible varieties to Aspergillus flavas in peanut. Chinese J of Oil Crop, 1999,17(1):43-53.
[33] Guo B, Chen X, Dang P, et al. Peanut gene expression profiling in developing seeds at different reproduction stages during Aspergillus parasiticus infection. BMC Dev Biol, 2008, 8(2): 12-27.
[34] Liang X, Pan R, Zhou G. Relation of trypsin inhibitor in peanut seed and resistance to Aspergillus Flavus invasion. Acta Agro Sinica, 2003, 29(2): 295-299.

[1] 王优蓓,郭思妤,常碧博,叶蕊芳,花强. 螺旋链霉菌遗传操作系统-接合转移体系的建立[J]. 中国生物工程杂志, 2021, 41(2/3): 45-52.
[2] 叶中杨,邱怀雨,祝丙华,李泽,祝业,王立贵. sRNA调控细菌耐药相关基因表达研究进展 *[J]. 中国生物工程杂志, 2018, 38(7): 89-93.
[3] 庞倩,陈晶,王小红,王佳. 基于噬菌体展示技术抗黄曲霉毒素B1单链抗体的筛选及其蛋白结构分析 *[J]. 中国生物工程杂志, 2018, 38(12): 41-48.
[4] 张丽丽, 徐碧玉, 刘菊华, 贾彩红, 张建斌, 金志强. 转香蕉MaASR1基因的拟南芥株系在干旱胁迫条件下的表达谱分析[J]. 中国生物工程杂志, 2017, 37(11): 59-73.
[5] 侯兵晓, 刘珊娜, 王斌斌, 朱宏吉, 乔建军. 热休克蛋白调控机制[J]. 中国生物工程杂志, 2016, 36(9): 87-93.
[6] 庞倩, 马榆, 李诚, 刘韫滔, 刘书亮, 王小红, 刘爱平. 基于CDR2和CDR3区随机突变筛选抗黄曲霉毒素B1单域重链抗体的研究[J]. 中国生物工程杂志, 2016, 36(7): 21-26.
[7] 周茜, 赵惠新, 李萍萍, 曾卫军, 李艳红, 葛风伟, 赵君洁, 赵和平. 独行菜种子转录组的高通量测序及分析[J]. 中国生物工程杂志, 2016, 36(1): 38-46.
[8] 姚元锋, 赵莹, 赵广荣. 人工sRNAs沉默csrA基因以优化大肠杆菌生产L-酪氨酸[J]. 中国生物工程杂志, 2013, 33(8): 61-66.
[9] 张采波, 张艳花, 刘和洋, 汪瀚宇, 曾文兵, 荣廷昭, 曹墨菊. 利用SRAP和SSR标记构建空间诱变新选玉米自交系指纹图谱[J]. 中国生物工程杂志, 2013, 33(10): 103-110.
[10] 朱宽鹏, 赵树进. 芪合酶基因Fm-STS在何首乌毛状根中的过量表达及dsRNA干扰[J]. 中国生物工程杂志, 2012, 32(08): 41-48.
[11] 易海涛, 刘芳, 夏立新, 闫浩, 刘飞燕, 李建杰, 刘志刚. 经合理的序列重组制备花生主要过敏原 Ara h 2低致敏衍生物[J]. 中国生物工程杂志, 2011, 31(7): 54-59.
[12] 胡熔, 刘大岭, 谢春芳, 姚冬生. 黄曲霉毒素解毒酶在大肠杆菌中的可溶性表达、纯化及其圆二色谱分析[J]. 中国生物工程杂志, 2011, 31(04): 71-76.
[13] 刘肖飞 梁卫红. T20N点突变对水稻OsRacD蛋白GTP酶活性的影响[J]. 中国生物工程杂志, 2010, 30(01): 56-61.
[14] 高克学,郭润芳,于宏伟,贾英民,马雯,林杨,周硕. 蚀木链霉菌KX6耐热内切葡聚糖酶的产生及酶学性质研究[J]. 中国生物工程杂志, 2009, 29(05): 83-87.
[15] 侯成千,梁卫红,王军. 水稻OsMY1和OsRacD基因互作的分子鉴定[J]. 中国生物工程杂志, 2008, 28(7): 63-66.