Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2012, Vol. 32 Issue (03): 106-109    
综述     
Akirin基因研究进展
满朝来, 李凤, 唐高霞, 甄鑫, 弭晓菊
哈尔滨师范大学生命科学与技术学院 哈尔滨 150025
Research Progress of Akirin Gene
MAN Chao-lai, LI Feng, TANG Gao-xia, ZHEN Xin, MI Xiao-ju
College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
 全文: PDF(347 KB)   HTML
摘要:

Akirin是近来发现的在骨骼肌生长发育和免疫反应中具有重要作用的基因。简要综述了akirin基因与免疫反应、骨骼肌发育和再生、myostatin基因和NF-κB因子的关系,同时分析了禽类akirin2基因的研究进展,最后对akirin基因的应用前景也进行了简单探讨,以期为akirin基因在医学和畜牧业中的深入研究和应用提供参考。

关键词: Akirin基因免疫骨骼肌MyostatinNF-κB    
Abstract:

Akirin is a recently discovered gene, which plays important roles in skeletal muscle development and immune response.The relationships between akirin gene and immune response, development and regeneration of skeletal muscle, myostatin gene and NF-κB factor are mainly summarized, and the research progress of poultry akirin2 gene. Additionally, the using prospects of akirin gene were also discussed briefly. is reviewed provide References for further studying and use of akirin gene in medical and animal husbandry fields are provided.

Key words: Akirin gene    Immunity    Skeletal muscle    Myostatin    NF-κB
收稿日期: 2011-12-07 出版日期: 2012-03-25
ZTFLH:  Q75  
基金资助:

黑龙江省自然科学基金(C201135)、黑龙江省教育厅科学技术研究项目(12511140)、黑龙江省高校科技创新团队研究计划资助项目

通讯作者: 满朝来,machaolai@126.com     E-mail: machaolai@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

满朝来, 李凤, 唐高霞, 甄鑫, 弭晓菊. Akirin基因研究进展[J]. 中国生物工程杂志, 2012, 32(03): 106-109.

MAN Chao-lai, LI Feng, TANG Gao-xia, ZHEN Xin, MI Xiao-ju. Research Progress of Akirin Gene. China Biotechnology, 2012, 32(03): 106-109.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2012/V32/I03/106

[1] Goto A, Matsushita K, Gesellchen V, et al. Akirins, highly conserved nuclear proteins, required for NF-κB dependent gene expression in Drosophila and mice. Nat Immunol, 2008, 9(1): 97-104.
[2] Moreno-Cid J A, Jiménez M, Cornelie S, et al. Characterization of Aedes albopictus akirin for the control of mosquito and sand fly infestations. Vaccine, 2010, 29(1):77-82.
[3] Marshall A, Salerno M S, Thomas M, et al. Mighty is a novel promyogenic factor in skeletal myogenesis. Exp Cell Res, 2008, 314(5): 1013-1029.
[4] Salerno M S, Dyer K, Bracegirdle J,et al. Akirin1 (Mighty), a novel promyogenic factor regulates muscle regeneration and cell chemotaxis. Exp Cell Res, 2009, 315(12): 2012-2021.
[5] McPherron A C, Lee S J. Double muscling in cattle due to mutations in the Myostatin gene. Proc Natl Acad Sci USA, 1997, 94(23): 12457-12461.
[6] Sazanov A, Ewald D, Buitkamp J, et al. A molecular marker for the chicken Myostatin gene (GDF8) maps to 7p11. Anim Genet, 1999, 30(5): 388-389.
[7] Kambadur R, Sharma M, Smith T P, et al. Mutations in Myostatin (GDF8) in double-muscled Belgian Blue and Piedmontese cattle. Genome Res, 1997, 7(9): 910-916.
[8] Grobet L, Martin L J, Poncelet D, et al. A deletion in the bovine Myostatin gene causes the double-muscled phenotype in cattle. Nat Genet, 1997, 17(1): 71-74.
[9] Lenardo M J, Baltimore D. NF-kappa B: a pleiotropic mediator of inducible and tissue-specific gene control. Cell, 1989, 58(2): 227-229.
[10] Hayden M S, Ghosh S. Signaling to NF-kappaB. Genes Dev, 2004, 18(18): 2195-2224.
[11] Hayden M S, Ghosh S. Shared principles in NF-kappaB signaling. Cell, 2008, 132(3): 344-362.
[12] Vallabhapurapu S, Karin M. Regulation and function of Nf-kappaB transcription factors in the immune system. Annu Rev Immunol, 2009, 27: 693-733.
[13] Kang S M, Tran A C, Grilli M, et al. NF-kappa B subunit regulation in nontransformed CD4+ T lymphocytes. Science, 1992, 256(5032):1452-1456.
[14] Su H, Bidere N, Zheng L, et al. Requirement for caspase-8 in NF-kappaB activation by antigen receptor. Science, 2005, 307(5714): 1465-1468.
[15] Bidere N, Ngo V N, Lee J, et al. Casein kinase1alpha governs antigen-receptor-induced NF-kappaB activation and human lymphoma cell survival. Nature, 2009, 458(7234): 92-96.
[16] Beutler B, Moresco E M. Akirins versus infection. Nat Immunol, 2008, 9(1): 7-9.
[17] 徐志坤, 薄联峰, 温俊歌,等. 猪 Akirin2 基因的定位及其影响IL-1β和IL-6 mRNA表达的研究. 中国兽医杂志, 2011, 47(11): 25-28. Xu Z K, Bo L F, Wen J G, et al. Study of location of pig akirin2 gene and its affecting expression of IL-1β and IL-6 mRNA. Chinese Journal of Veterinary Medicine, 2011, 47(11): 25-28.
[18] 满朝来, 李响, 曹敏. 鸡akirin同源基因的克隆与组织表达分析. 中国生物化学与分子生物学报, 2011, 27 (1): 55-61. Man C L, Li X, Cao M. Cloning and tissue expression analysis of chicken akirin homologous gene. Chinese Journal of Biochemistry and Molecular Biology, 2011, 27 (1): 55-61.
[19] 代飞,黄锎靓,刘贺贺,等. 鸭 akirin2 基因克隆序列分析与组织表达特性研究. 畜牧兽医学报, 2011, 42(1): 33-38. Dai F, Huang K L, Liu H H, et al. Cloning, sequence analysis and specific expression expression in different tissues of duck akirin2 gene. Acta Veterinariaet Zootechnica Sinica, 2011, 42(1): 33-38.
[20] 王万霞,黄锎靓,刘贺贺,等. Akirin2 基因在肉鸭胸肌和腿肌中的发育表达研究. 中国家禽, 2010, 9 (32): 15-18. Wang W X, Huang K L, Liu H H, et al. Expression of Akirin2 gene in development of breast and leg muscle in duck. China Poultry, 2010, 9 (32): 15-18.
[21] Macqueen D J, Bower N I, Johnston I A. Positioning the expanded akirin gene family of Atlantic salmon within the transcriptional networks of myogenesis. Biochem Biophys Res Commun, 2010, 400(4): 599-605.
[22] Macqueen D J, Kristjánsson B K, Johnston I A. Salmonid genomes have a remarkably expanded akirin family, coexpressed with genes from conserved pathways governing skeletal muscle growth and catabolism. Physiol Genomics, 2010, 42(1):134-148.
[23] Seiki S, Takahisa Y, Shin S, et al. Association of a single nucleotide polymorphism in akirin 2 gene with marbling in Japanese Black beef cattle. BMC Research Notes, 2009, 14(2): 131-135.
[24] Watanabe N, Satoh Y, Fujita T, et al. Distribution of allele frequencies at TTN g.231054C > T, RPL27A g.3109537C > T and AKIRIN2 c.*188G > A between Japanese Black and four other cattle breeds with differing historical selection for marbling. BMC Res Notes, 2011, 20(4):10-15.

[1] 赵梦泽,李凤智,王鹏银,李剑,徐寒梅. PD-L1和VEGF双靶点联合阻断治疗的研究进展[J]. 中国生物工程杂志, 2021, 41(9): 71-77.
[2] 康可人,袁强,梁飞敏,伍丽贤. 苄非他明人工抗原合成[J]. 中国生物工程杂志, 2021, 41(7): 58-65.
[3] 郑婕,吴昊,乔建军,朱宏吉. 革兰氏阳性菌荚膜多糖研究进展*[J]. 中国生物工程杂志, 2021, 41(7): 91-98.
[4] 张赛,王刚,刘仲明,李辉军,汪大明,钱纯亘. 新型冠状病毒胶体金抗原快速检测试剂的研制及性能评价*[J]. 中国生物工程杂志, 2021, 41(5): 27-34.
[5] 李帅鹏,任和,安展飞,杨艳坤,白仲虎. 血栓调节蛋白化学发光免疫分析检测方法的建立*[J]. 中国生物工程杂志, 2021, 41(4): 30-36.
[6] 张雪洁,汤家宝,李廷栋,葛胜祥. 单分子免疫检测技术研究进展*[J]. 中国生物工程杂志, 2021, 41(4): 47-54.
[7] 原博,王杰文,康广博,黄鹤. 双特异性纳米抗体的研究进展及其应用 *[J]. 中国生物工程杂志, 2021, 41(2/3): 78-88.
[8] 张赛,向乐,李林海,李辉军,王刚,钱纯亘. 新型冠状病毒(2019-nCoV)IgM /IgG抗体检测试剂的研制及性能评价[J]. 中国生物工程杂志, 2020, 40(8): 1-9.
[9] 程旭,杨雨睛,吴赛男,侯勤龙,李咏梅,韩慧明. 金黄色葡萄球菌SarAIcaA及其融合基因的DNA疫苗构建及在小鼠免疫应答中的初步研究 *[J]. 中国生物工程杂志, 2020, 40(7): 41-50.
[10] 岑黔鸿,高彤,任怡,雷涵. 重组酿酒酵母表达幽门螺杆菌VacA蛋白及其免疫原性分析*[J]. 中国生物工程杂志, 2020, 40(5): 15-21.
[11] 王猛,宋慧茹,程雨洁,王毅,杨波,胡征. 以核糖体蛋白L7/L12为分子标志物精准检测肺炎链球菌的研究 *[J]. 中国生物工程杂志, 2020, 40(4): 34-41.
[12] 张玲梅,王豪举. 猪链球菌检测技术研究进展 *[J]. 中国生物工程杂志, 2020, 40(4): 84-91.
[13] 毛慧,吕玉华,朱丽慧,林月霞,廖荣荣. 外泌体在病毒感染诊断和治疗中的作用研究 *[J]. 中国生物工程杂志, 2020, 40(3): 104-110.
[14] 钱颖,钱晨,白晓庆,王晶晶. 免疫佐剂在肿瘤免疫疗法中的应用进展 *[J]. 中国生物工程杂志, 2020, 40(3): 96-103.
[15] 潘彤彤,陈永平. 重型/危重型新型冠状病毒肺炎关键治疗技术研究进展[J]. 中国生物工程杂志, 2020, 40(1-2): 78-83.