Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2012, Vol. 32 Issue (03): 100-105    
综述     
基因组重排技术在开发新代谢产物中的应用
郑连宝, 裘娟萍
浙江工业大学生物与环境工程学院 杭州 310014
The Application of Genome Shuffling in Developing New Metabolites
ZHENG Lian-bao, QIU Juan-ping
College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310014, China
 全文: PDF(847 KB)   HTML
摘要:

基因组重排是一种基于原生质体融合,并对原生质进行递推式融合的新型技术。随着基因组重排技术的不断发展和成熟,通过基因组重排获得新代谢产物的例子不断出现,表明该项技术作为新代谢产物开发的途径具有一定的应用前景。在此列举了基因组重排在开发新代谢产物方面的成果,包括基因组重排激活沉默基因产生新代谢产物;基因组重排引入单酶基因产生新抗生素;基因组重排互换基因模块产生杂合抗生素和基因组重排替换前体基因产生新抗生素的例子,并展望了其发展的趋势。

关键词: 基因组重排新代谢产物沉默基因    
Abstract:

Genome shuffling is a new-type technology based on protoplast fusion and recursive protoplast fusion. With the development and mature of genome shuffling, many new metabolites have been obtained through this technology, which demonstrates a promising prospect for genome shuffling to be a way to develop new metabolites. The new metabolites developed by genome shuffling technology are focused, including metabolites from activation of silent genes, new antibiotics from introduction of single enzyme gene, hybrid antibiotics from exchange of gene modules and new materials from replacement of precursor gene.The prospect of this technology is also discussed.

Key words: Genome shuffling    New metabolites    Silent genes
收稿日期: 2011-11-24 出版日期: 2012-03-25
ZTFLH:  Q78  
基金资助:

浙江省重大科技专项重点资助项目(2009C12062)

通讯作者: 裘娟萍,qiujping@yahoo.com.cn     E-mail: qiujping@yahoo.com.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

郑连宝, 裘娟萍. 基因组重排技术在开发新代谢产物中的应用[J]. 中国生物工程杂志, 2012, 32(03): 100-105.

ZHENG Lian-bao, QIU Juan-ping. The Application of Genome Shuffling in Developing New Metabolites. China Biotechnology, 2012, 32(03): 100-105.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2012/V32/I03/100


[1] Fabbretti A,Gualerzi C O,Brandi L.How to cope with the quest for new antibiotics.Turin Special Issue:Biochemistry for Tomorrow’s Medicine,2011,585(11):1673-1681.

[2] Tseng H K,Perfect J R.Strategies to manage antifungal drug resistance.Expert Opin Pharmacother, 2011,12(2):241-256.

[3] Shapiro R S,Robbins N,Cowen L E.Regulatory circuitry governing fungal development,drug resistance,and disease.Microbiol Mol Biol Rev,2011,75(2):213-267.

[4] Handelsman J,Rondon M R,Brady S F,et al.Molecular biological access to the chemistry of unknown soil microbes:A new frontier for natural products.Chemistry & Biology,1998,5:245-249.

[5] Imhoff J F,Labes A,Wiese J.Bio-mining the microbial treasures of the ocean: new natural products.Biotechnol Adv,2011,29(5):468-482.

[6] Menzella H G,Reeves C D.Combinatorial biosynthesis for drug development.Curr Opin Microbiol,2007,10(3):238-245.

[7] Zhang Y X,Perry K,Vinci V A.Genome shuffling leads to rapid phenotypic improvement in Bacteria.Nature,2002,415:644-646.

[8] Stephanopoulos G.Metabolic engineering by genome shuffling-two reports on whole-genome shuffling demonstrate the application of combinatorial methods for phenotypic improvement in bacteria.Nature Biotechnology,2002,20(7): 666-668.

[9] Jin Z H, Xu B,Lin S Z,et al.Enhanced production of spinosad in Saccharopolyspora spinosa by genome shuffling.Appl Biochem Biotechnol,2009,159(3):655-663.

[10] Gendy M M,Bondkly A M.Genome shuffling of marine derived bacterium Nocardia sp.ALAA 2000 for improved ayamycin production.Antonie Van Leeuwenhoek,2011,99(4):773-780.

[11] John R P, Gangadharan D,Madhavan Nampoothiri K.Genome shuffling of Lactobacillus delbrueckii mutant and Bacillus amyloliquefaciens through protoplasmic fusion for L-lactic acid production from starchy wastes.Bioresour Technol,2008,99(17):8008-8015.

[12] Wang C,Zhang X L,Chen Z,et al.Strain construction for enhanced production of spinosad via intergeneric protoplast fusion.Canadian Journal of Microbiology,2009,55:1070-1075.

[13] Hopwood D A,Chater,Fresh K F.Approaches to Antibiotic Production.Philosophical Transactions of the Royal Society of London Series B-Biological Sciences,1980,290:313-328.

[14] Jian X,Pang X,Yu Y,et al.Identification of genes necessary for jinggangmycin biosynthesis from Streptomyces hygroscopicus 10-22.Antonie Van Leeuwenhoek,2006,90(1):29-39.

[15] 袁德军,周启.农抗5102产生菌原生质体融合育种的研究Ⅳ.融合子FR-008的验证及其产生新活性物质的分离和鉴别.生物工程学报,1991,7(2):142-147. Yuan D J,Zhou Q.Studies on fusion breeding of protoplasts from antibiotic producing strain 5102Ⅳ.Verification of fusant FR-008,Isolation and characterization of Its new antimicrobial substance.Chinese Journal of Biotechnology,1991,7(2):142-147.

[16] 黄曦,邓子新.多烯大环内酯类抗生素——链霉菌FR-008代谢产物的研究.中国抗生素杂志,1999, 24(5):329-333. Huang X,Deng Z X,Liao R A.Characterization of the hepaene macrolide antibiotic produced by Streptomyces sp.FR-008.Chinese Journal of Antibiotics,1999,24(5):329-333.

[17] Hu Z,Bao K,Zhou X,et al.Repeated polyketide synthase modules involved in the biosynthesis of a heptaene macrolide by Streptomyces sp.FR-008.Mol Microbiol,1994,14(1):163-172.

[18] Chen S,Huang X,Zhou X,et al.Organizational and mutational analysis of a complete FR-008/Candicidin gene cluster encoding a structurally related polyene complex.Chem Bio,2003,10(11):1065-1076.

[19] Wang M Z,Liu S S,Li Y Y,et al.Protoplast mutation and genome shuffling induce the endophytic fungus Tubercularia sp. TF5 to produce new compounds.Current Microbiology,2010,61:254-260.

[20] Li Y,Lu C,Hu Z,et al.Secondary metabolites of Tubercularia sp.TF5,an endophytic fungal strain of Taxus mairei.Nat Prod Res,2009,23(1):70-76.

[21] Ohnishi Y,Ishikawa J,Hara H,et al.Genome sequence of the streptomycin-producing microorganism Streptomyces griseus IFO 13350.Journal of Antibiotics,2008,190(11):4050-4060.

[22] Kudo F,Eguchi T.Biosynthetic genes for aminoglycoside antibiotics.The Journal of Antibiotics,2009,62:471-481.

[23] Yamashita F,Hotta K,Kursawa S,et al.New antibiotic-producing streptomycetes,Selected by antibiotic resistance as a marker.I.New antibiotic production generated by protoplast fusi on treatment between Streptomyces griseus and S.tenjimariensis.Journal of Antibiotics,1985,28:58-63.

[24] 杨毓芬,李焕娄,金文藻,等.新蒽环类化合物F301A的分离鉴别及活性测定.中国抗生素杂志,1998,23(2):104-106. Yang Y F,Li H L,Jin W Z,et al.Isolation,structure elucidation and determination of bioactivity of F301A.Chinese Journal of Antibiotics,1998,23(2):104-106.

[25] Li X M,Novotná J,Vohradsky J,et al.Major proteins related to chlortetracycline biosynthesis in a Streptomyces aureofaciens production strain studied by quantitative proteomics.Appl Microbiol Biotechnol,2001,57:717-724.

[26] Wendell G,Iara R S,Elaine A A,et al.Three new complexes of platinum(II) with doxycycline,oxytetracycline and chlortetracycline and their antimicrobial activity.Journal of the Brazilian Chemical Society,2006,17(8):1627-1633.

[27] 徐京宁,潘铁英,王伟,等.链霉菌种间融合重组子产生的抗生素的分离和化学结构的确认.中国抗生素杂志,1996,21(1):1-4. Xu J N,Pan T Y,Wang W,et al.Isolation and structural assignmenet of the antibiotic produced by recombinant.Chinese Journal of Antibiotics,1996,21(1):1-4.

[28] Fleck W F,Schlegel B,Ihn W.New anthracycline antibiotics produced by interspecific recombinants of streptomycetes.IV.Antimicrobial Activity of Iremycin.Z Allg Mikrobiol,1982,22(5):349-353.

[29] Carolina C M,Tania E C Z,Gabriela R E.Penicillin and cephalosporin production:a historical perspective.Rev Latinoam Microbiol,2007,49:88-98.

[30] Chen C C,Feng Y S,Chyau C C,et al.Method for producing novel beta-lactam antibiotic from protoplast fusion strain.US,20050054031A1,2005-3-10.

[31] Burg R W,Miller B M,Baker E E,et al.Avermectins,new family of potent anthelmintic agents:producing organism and fermentation.Antimicrob Agents Chemother,1979,15(3):361-367.

[32] Kim K R,Kim T J,Suh J W.The gene cluster for spectinomycin biosynthesis and the aminoglycoside-resistance function of spcM in Streptomyces spectabilis.Curr Microbiol,2008, 57(4):371-374.

[33] 许国旺,路鑫,杨胜利.代谢组学研究进展.中国医学科学院学报,2007,29(6):701-711. Xu G W,Lu X,Yang S L.Recent advances in metabonomics.Acta Academiae Medicinae Sinicae,2007,29(6):701-711.

[34] Nicholson J K,Lindon J C,Systems biology:metabonomics.Nature,2008,455:1054-1056.

[35] Lindon J C,Holmes E,Nicholson J K.Metabonomics and its role in drug development and disease diagnosis.Expert Rev Mol Diagn,2004,4(2):189-199.

[1] 宋佳雯, 田苏, 张玉如, 王志珍, 常忠义, 高红亮, 步国建, 金明飞. 基因组重排筛选高产谷氨酰胺转胺酶菌株[J]. 中国生物工程杂志, 2017, 37(9): 105-111.
[2] 黄俊, 黎贞崇, 吴仁智, 陈英, 陈东, 黄日波. 基因组重排技术选育乙醇高产菌株[J]. 中国生物工程杂志, 2014, 34(7): 56-62.
[3] 卢圣国 李霜 朱建国 孟庆雄. 基因组重排技术应用与进展[J]. 中国生物工程杂志, 2010, 30(07): 0-0.
[4] 梁惠仪,郭勇. 全基因组重排育种技术提高产豆豉纤溶酶菌产酶量[J]. 中国生物工程杂志, 2007, 27(10): 39-43.