Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2012, Vol. 32 Issue (01): 56-63    
技术与方法     
根癌农杆菌介导的黑曲霉遗传转化体系的建立及优化
黎明, 刘萌, 黄云雁, 周丽颖, 孙昕, 路福平
天津市工业微生物重点实验室 工业发酵微生物教育部重点实验室 天津科技大学生物工程学院 天津 300457
Establishment and Optimization of Agrobacterium tumefaciens-mediated Transformation System of Aspergillus niger
LI Ming, LIU Meng, HUANG Yun-yan, ZHOU Li-ying, SUN Xin, LU Fu-ping
Tianjin Key Laboratory of Industrial Microbiology, Key Laboratory of Industrial Fermentation Microbiology Ministry of Education, The College of Biotechnology, Tianjin University of Science & Technology,Tianjin 300457, China
 全文: PDF(644 KB)   HTML
摘要:

基于根癌农杆菌介导的遗传转化方法的独特优点,研究黑曲霉转化过程中各主要影响因素,建立高效的黑曲霉遗传转化方法。构建双元载体pBI-hph,通过电转导入农杆菌LBA4404中,以黑曲霉TCCC41056为受体菌株,利用潮霉素B基因作为筛选标记,对影响转化效率的孢子悬液的新鲜程度及浓度、农杆菌菌液浓度、共培养时间、共培养温度这五个条件进行分析,建立根癌农杆菌介导的黑曲霉遗传转化体系。实验结果表明,上述条件对黑曲霉的转化效率有较大的影响,通过优化,黑曲霉转化效率可达83个转化子/107分生孢子;整合到黑曲霉基因组的外源基因可以稳定遗传,在转接10代后遗传性能仍保持稳定,并在众多转化子中筛选得到了糖化酶活力提高18%的黑曲霉突变株。根癌农杆菌介导的黑曲霉转化体系的建立,为进一步研究黑曲霉的功能基因以及开发黑曲霉表达系统提供了有力的手段。

关键词: 根癌农杆菌黑曲霉介导转化糖化酶    
Abstract:

In order to establish an efficient transformation method for Aspergillus niger, the effect of different conditions on transformation frequency which is based on the unique advantages of Agrobactrium tumefaciens-mediated system(ATMT) were studied. Binary vector, pBI-hph was constructed and transferred into A.tumefaciens LBA4404 by electroporation. Filamentous fungus A.niger TCCC41056 was used as the hose strain and hph gene was used as selective marker, the transformation system of A. niger mediated by A.tumefaciens was established. Besides, the factors affecting the transformation efficiency such as spores freshness,A.tumefaciens'concentration,spore concentration,co-culture temperature and time were analyzed. The result of PCR showed that the T-DNA was integrated into genome of the A.niger. All 8 randomly selected hygromycin B-resistant transformants tested were stable after 10 subcultures onto complete medium without hygromycin. Based on the above researches, the conditions of ATMT were optimized and much higher transformation efficiency was got:about 83 transformants/107 spores. From of numerous transformants, one A.niger mutant strain that high-yield of glucoamylase was screened. ATMT was applied in A.niger and this transformation system will provide a powerful tool for the further study on function genes of A. niger.

Key words: Agrobacterium tumefaciens    Aspergillus niger    Transformation    Glucoamylase
收稿日期: 2011-10-13 出版日期: 2012-01-25
ZTFLH:  Q78  
基金资助:

国家自然科学基金(21176190)、天津市科技支撑计划(11ZCKFSY00900)、天津市应用基础及前沿技术研究计划(11JCYBJC 09600)资助项目

服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

黎明, 刘萌, 黄云雁, 周丽颖, 孙昕, 路福平. 根癌农杆菌介导的黑曲霉遗传转化体系的建立及优化[J]. 中国生物工程杂志, 2012, 32(01): 56-63.

LI Ming, LIU Meng, HUANG Yun-yan, ZHOU Li-ying, SUN Xin, LU Fu-ping. Establishment and Optimization of Agrobacterium tumefaciens-mediated Transformation System of Aspergillus niger. China Biotechnology, 2012, 32(01): 56-63.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2012/V32/I01/56


[1] Jorgensen T R, Goosen T, Van den Hondel C A, et al. Transcriptomic comparison of Aspergillus niger growing on two different sugars reveals coordinated regulation of the secretory pathway. MC Genomics, 2009, 44(10):1-16.

[2] Naundorf A, Melaer G, Archelas A, et al. Influence of pH on the expression of a recombinant epoxide hydrolase in Aspergillus niger. Biotechnology Journal, 2009, 5(4):756-765.

[3] Yuan X L, Van der Kaaij R M, Van den Hondel C A, et al. Aspergillus niger genome-wide analysis reveals a large number of novel alpha-glucan acting enzymes with unexpected expression profiles. Molecular Genetics and Genomics, 2008, 28(14):545-561.

[4] Denise I J, Maurien M, Isabelle M, et al. Effective lead selection for improved protein production in Aspergillus niger based on integrated genomics. Fungal Genetics and Biology, 2009, 46(3):141-152.

[5] Peter P J, Biezen N V, Conesa A, et al. Filamentous fungi as cell factories for heterologous protein production. Trends in Biotechnology, 2002, 20(5):200-206.

[6] Fleissner A, Dersch P. Expression and export:recombinant protein production systems for Aspergillus. Appiled Microbiol Biotechnology, 2010, 87(4):1255-1270.

[7] Michiels C B, Hooykass P J J, Van den Hondel C A, et al. Agrobacterium-mediated transformation as a tool for functional genomics in fungi. Current Genetics, 2005, 48(1):1-17.

[8] Meyer V, Mueller D, Till S, et al. Comparison of different transformation methods for Aspergillus giganteus. Curr Genet, 2003, 43(5):371-377.

[9] 范亮波,李梅,冀颖,等.根癌农杆菌介导的木霉遗传转化及应用进展.生物技术通报,2010,11(3):1-6. Fan L B, Li M, Ji Y, et al. Agrobacterium tumefaciens Mediated Transformantion and Its Application in Trichoderma spp.Biotechnology Bulletin, 2010, 11(3):1-6.

[10] Sugui J A, Chang Y C, Kwon-Chung K J. Agrobacterium tumefaciens-mediated transformation of Aspergillus fumigatus:an efficient tool for insertional mutagenesis and targeted gene disruption. Applied Environ Microbiol, 2005, 71(4):1798-1802.

[11] Michielse C B, Hooykaas P J, Van den Hondel C A, et al. Agrobacterium-mediated transformation of the filamentous fungus Aspergillus awamori. Nature Protocols, 2008, 10 (3):1671-1678.

[12] 郭慧, 杨哲, 邢来军, 等. 根癌农杆菌介导的日本曲霉转化体系的建立. 微生物学报, 2011, 51(1):115-121. Guo H, Yang Z, Xing L J, et al. Transformation system of Aspergillus japonicus mediated by Agrobacterium tumefaciens. Acta Microbiologica Sinica, 2011, 51(1):115-121.

[13] Huang Y J, Yang H T, Chen K, et al. Modification of Trichoder maviride by Agrobacterium tumefaciens-mediated transformation. Shangdong Science, 2005, 18(3):30-35.

[14] De Groot M J A, Bundock P, Hooykaas P J J, et al. Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nature Biotechnology, 1998, 16 (9):839-842.

[15] 贺莹, 吕利华, 张婵, 等. 黑曲霉IN7-31产糖化酶的液态发酵参数与技术优化研究. 中国酿造, 2011, 12(1):48-52. He Y, Lv L H, Zhang C, et al. Optimization of submerged fermentation parameters and technology of glucoamylase-producing Aspergillus niger IN7-31.China Brewing, 2011, 12(1):48-52.

[16] Mahmood T, Zar T. Multiple pulses improve electroporation efficiency in Agrobacterium tumefaciens. Molecular Biology and Genetics, 2007, 26(4):13-16.

[17] 张宗城.GB/T 16285-2008食品中葡萄糖的测定酶-比色法和酶-电极法.北京:中国标准出版社,2008. Zhang Z C. GB/T 16285-2008 Determination of glucose in food-enzyme-colorimetric method and enzyme-electrode method. Beijing:China Standards Press, 2008.

[18] 高兴喜, 杨谦, 郭兆奎, 等. 影响根癌农杆菌介导的木霉菌遗传转化因素分析. 微生物学通报, 2005, 32(1): 74-78. Gao X X, Yang Q, Guo Z K, et al. Factors influencing Agrobacterium tumefaciens-mediated transformation in Trichoderma harzianum. Microbiology, 2005, 32(1): 74-78.

[19] Zhang P, Xu B, Li Y, et al. Agrobacterium tumefaciens-mediated transformation as a tool for insertional mutagenesis in the fungus Penicillium marneffei. Mycological Research, 2008, 112(8):943-949.

[1] 王艳梅,寇航,马梅,申玉玉,赵宝顶,路福平,黎明. 利用CRISPR-Cas9技术失活黑曲霉中果胶酶基因及突变株性能评价*[J]. 中国生物工程杂志, 2021, 41(5): 35-44.
[2] 孟晓琳,庞锡明,王洁. 农杆菌介导海洋草酸青霉转化体系及聚酮合酶Pks生物学功能*[J]. 中国生物工程杂志, 2020, 40(9): 11-17.
[3] 王利群, 鲁洪中, 储炬, 王永红. 不同培养方式下dCO2对黑曲霉发酵产糖化酶的影响[J]. 中国生物工程杂志, 2017, 37(1): 27-37.
[4] 孙文怡, 张素芳, 林心萍, 栾雨时. 一种遗传转化方法在海洋红酵母(Rhodotorula mucilaginosa)中的应用[J]. 中国生物工程杂志, 2016, 36(6): 81-86.
[5] 施慧琳, 孙靖淳, 张荣凯, 高大启, 王泽建, 郭美锦, 周礼勤, 庄英萍. 电子嗅在线反馈控制毕赤酵母糖化酶发酵过程中甲醇浓度新方法的应用[J]. 中国生物工程杂志, 2016, 36(3): 68-76.
[6] 陈香粉, 鲁洪中, 唐文俊, 唐寅, 储炬, 庄英萍, 张嗣良. 基于比速率及代谢流的黑曲霉突变株和野生株分析[J]. 中国生物工程杂志, 2014, 34(8): 35-40.
[7] 李刚锐, 李林俐, 范翔, 孟延发. 溶胶凝胶法固定化黑曲霉脂肪酶的性质研究[J]. 中国生物工程杂志, 2014, 34(4): 78-84.
[8] 朱彩虹, 李水根, 齐力旺, 韩素英. 农杆菌介导的日本落叶松胚性细胞遗传转化研究[J]. 中国生物工程杂志, 2013, 33(5): 75-80.
[9] 李瑞瑞, 刘佃磊, 杨晴, 郝琼, 姜凯凯, 李丕武. 响应面法优化黑曲霉产葡萄糖氧化酶的发酵条件[J]. 中国生物工程杂志, 2013, 33(10): 111-116.
[10] 李美玉, 李锐, 于敏, 王胜华, 陈放. 根癌农杆菌介导的金发草遗传转化条件的优化[J]. 中国生物工程杂志, 2013, 33(1): 41-46.
[11] 邹智. 农杆菌vir基因诱导因子研究进展[J]. 中国生物工程杂志, 2011, 31(7): 126-132.
[12] 黄文, 杨洪江, 秦慧彬. 黑曲霉纤维素酶突变子T-DNA插入位点的遗传分析及性质鉴定[J]. 中国生物工程杂志, 2011, 31(04): 60-64.
[13] 秦慧彬, 杨洪江, 黄文, 李玲艳. 强启动子glaA介导cbhB基因在黑曲霉中的表达[J]. 中国生物工程杂志, 2010, 30(11): 34-38.
[14] 段兴鹏 唐俊 陈捷 陈红漫 任大明. 根癌农杆菌介导深绿木霉高产漆酶菌株的构建和筛选[J]. 中国生物工程杂志, 2010, 30(07): 0-0.
[15] 曹泽虹,董玉玮,苗敬芝,吕兆启. 黑曲霉生产菊粉酶工艺条件的研究[J]. 中国生物工程杂志, 2009, 29(08): 97-101.