Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2011, Vol. 31 Issue (8): 18-23    
研究报告     
不同佐剂条件下Aβ多肽B细胞表位疫苗诱导产生抗体的免疫反应特性分析
陈鳌1,2, 余云舟1, 王文斌1, 庞晓斌2, 王双1, 俞炜源1, 孙志伟1
1. 军事医学科学院生物工程研究所 北京 100071;
2. 河南大学药学院 开封 475001
The Immunological Character of Polypeptide B Cell Epitopes Vaccines of Alzheimer's Disease in Different Adjuvants
CHEN Ao1,2, YU Yun-zhou1, WANG Wen-bin1, PANG Xiao-bin2, WANG Shuang1, YU Wei-yuan1, SUN Zhi-wei1
1. Institute of Biotechnology,Academy of Military Medical Sciences,Beijing 100071,China;
2. Pharmaceutical College of Henan University,Kaifeng 475001,China
 全文: PDF(818 KB)   HTML
摘要:

目的:研究阿尔茨海默病β淀粉样肽(Aβ)B细胞表位疫苗2Aβ1-15-PADRE(Aβ-T)诱导产生抗体的免疫反应特性,并探讨不同佐剂对该疫苗免疫反应效果的影响。方法:合成了含2个Aβ42的 B细胞表位—Aβ1-15及1个辅助T细胞表位—PADRE的多肽2Aβ1-15-PADRE。采用Al(OH)3佐剂,弗氏佐剂,Abisco佐剂,MF59佐剂分别与多肽疫苗联合免疫小鼠,并另设3个对照组:无佐剂多肽免疫组(Mock),PBS免疫组(PBS),未免疫组(Native)。结果:5组多肽免疫组小鼠均产生了针对Aβ的特异性抗体,无佐剂多肽免疫组的IgG抗体滴度最低,Al(OH)3佐剂组,MF59佐剂组,Abisco佐剂组小鼠IgG抗体滴度较高,弗氏佐剂组IgG抗体滴度最高。斑点杂交实验结果显示5组小鼠免疫后血清与Aβ42单体反应较弱,与寡聚体反应最明显,与纤维状Aβ42几乎不反应。结论:4种佐剂均能提高多肽疫苗的免疫反应,产生高水平抗Aβ的特异性抗体。5组免疫小鼠产生的抗体均与Aβ寡聚体反应较强,与纤维状Aβ42反应较弱,表明该多肽疫苗具有良好的应用前景。

关键词: 多肽疫苗佐剂抗A&beta抗体斑点杂交    
Abstract:

Objective:To evaluate the immune response of polypeptide vaccines Aβ1-15-PADRE(Aβ-T)against Alzheimer's disease containing the immunodominant B cell epitope from β-amyloid and pan-DR helper T cell epitopes and determine whether various adjuvants could boost the efficacy or performance of the vaccine in mouse model. Methods:The polypeptides of 2Aβ1-15-PADRE containing two B cell epitopes Aβ1-15 and one pan-DR helper T cell epitope PADRE was be artificially synthesized as polypeptide vaccines Aβ1-15-PADRE. Compared to the PBS control or untreated control,the immunogenicity of polypeptide vaccines without adjuvant and with four different adjuvants(Aluminum,Freund's adjuvant,MF59 adjuvant and Abisco adjuvant respectively)were evaluated in Balb/C mouse model. Results:All groups produced the specific antibody IgG against Aβ. But the four adjuvant groups were better to generate immune response than Mock group or negative control. Of these,the titer of antibodies produced by the Freund's adjuvant group was highest. The results of dot blotting showed that the sera antibodies could bind to the oligomer of Aβ better than the monomer form. But the antibodies have not binding reaction to the fiber form. Conclusion:All of these adjuvants could enhance the effect of polypeptide vaccine against Alzheimer's disease in mouse model. All of the sera antibodies bind to the oligomer form of Aβ. The immunological character shows that the polypeptide vaccine is potential in clinical trial.

Key words: Polypeptide vaccine    Adjuvant    Anti-A&beta    antibody    Dot blot
收稿日期: 2010-12-31 出版日期: 2011-08-25
ZTFLH:  Q819  
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

陈鳌, 余云舟, 王文斌, 庞晓斌, 王双, 俞炜源, 孙志伟. 不同佐剂条件下Aβ多肽B细胞表位疫苗诱导产生抗体的免疫反应特性分析[J]. 中国生物工程杂志, 2011, 31(8): 18-23.

CHEN Ao, YU Yun-zhou, WANG Wen-bin, PANG Xiao-bin, WANG Shuang, YU Wei-yuan, SUN Zhi-wei. The Immunological Character of Polypeptide B Cell Epitopes Vaccines of Alzheimer's Disease in Different Adjuvants. China Biotechnology, 2011, 31(8): 18-23.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2011/V31/I8/18


[1] Schenk D,Barbour R,Dunn W,et al. Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature,1999,400:173-177.

[2] Wilcock D M,Colton C A. Anti-Aβ immunotherapy in Alzheimer's disease;relevance of transgenic mouse studies to clinical trials. Alzheimer's Disease,2008,15(4):555-569.

[3] Singh H,Raghava G P. Propred:prediction of HLA-DR binding sites. Bioinformatics,2001,17(12):1236-1237.

[4] Agadjanyan M G,Ghochikyan A,Petrushina I,et al. Prototype Alzheimer's disease vaccine using the immunodominat B cell epitope from beta-amyloid and promiscuous T cell pan HLA DR-binding peptide. Immunol,2005,174:1580-1586.

[5] Petrushina I,Ghochikyan A,Mktrichyan M,et al. Alzheimer's disease peptide vaccine reduces insoluble but not soluble/olimeric Aβ species in Amyloid precursor protein transgenic mice. The Journal of Neuroscience,2007,27:12721-12731.

[6] Hardy J A,Higgins G A,Alzheimer's disease:the amyloid cascade hypothesis. Science,1992,256:184-185.

[7] Klein W L,Krafft G A,Finch C E,Targeting small Abeta oligomers:the solution to an Alzheimer's disease conundrum? Trends Neurosci,2001,24:219-224.

[8] Glabe C C. Amyloid accumulation and pathogensis of Alzheimer's disease:significance of monomeric,oligomeric and fibrillar Abeta. Subcell Biochem,2005,38:167-177.

[9] Walsh D M,Selkoe D J. Deciphering the molecular basis of memory failure in Alzheimer's disease. Neuron,2004,44:181-193.

[10] Sanjay W Pimplikar. Reassessing the amyloid cascade hypothesis of Alzheimer's disease. Int J Biochem Cell Biol,2009, 41(6):1261-1268.

[11] Bacskai B J,Kajdasz S T,Christie R H,et al. Imaging of amyloid-β deposits in brains of living mice permits direct observation of clearance of plaques with immunotherapy. Nat Med,2001,7:369-372.

[12] Frenkel D,Solomon B,Benhar I. Modulation of Alzheimer's beta-amyloid neurotoxicity by sitedirected single-chain antibody. Neuroimmunol,2000,106(1-2):23-31.

[13] Bard F,Cannon C,Barbour R,et al. Peripherally administered antibodies against amyloid β-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nat Med,2000,6:916-919.

[14] Bacskai B J,Kajdasz S T,Mclellan M E,et al. Non-Fc-mediated mechanisms are involved in clearance of amyloid-beta in vivo by immunotherapy. J Neurosci,2002,22:7873-7878.

[15] Demottos R B,Bales K R,Cummins D J,et al. Brain to plasma amyloid-betefflux:a measure of brain amyloid burden in a mouse model of Alzheimer's disease. Science,2002,295:2264-2267.

[16] Schultzea V,D’Agostob V,Wackc A,et al. Safety of MF59 adjuvant. Vaccine,2008,26:3209-3222.

[17] Lambert M P,Viola K L,Chromy B A,et al. Vaccination with soluble Ab oligomers generates toxicity-neutralizing antibodies. Journal of Neurochemistry,2001,79,595-605.

[18] Cribbs D H,Ghochikyan A,Vasilevko V,et al. Adjuvant-dependent modulation of Th1 and Th2 responses to immunization with β-amyloid. International Immunology,2003,15:505-514.

[19] Waller A,Flock M,Smith K,et al. Vaccination of horses against strangles using recombinant antigens from Streptococcus equi. Vaccine,2007,25:3629-3635.

[20] Pellegrini M, Nicolayb U,Lindertc K,et al. MF59-adjuvanted versus non-adjuvanted influenza vaccines:Integrated analysis from a large safety database. Vaccine,2009,27:6959-6965.

[21] Morgan D,Diamond D M,Gottschall P E,et al. Aβ peptide vaccination prevents memory loss in an animal model of Alzheimer's disease. Nature,2001,408:982-985.

[22] Janus C,Pearson J,McLaurin J,et al. Aβ peptide immunization reduces behavioural impairment and plaques in a model of Alzheimer's disease. Nature,2000,408:979-982.

[23] Walsh D M,Klyubin I,Shankar G M,et al. The role of cell-derived oligomers of Aβ in Alzheimer's disease and avenues for therapeutic intervention. Biochemical Society,2005,1087-1090.

[1] 陈修月,周文锋,何庆,苏冰,邹亚文. 噬菌体Qβ病毒样颗粒的制备、纯化及鉴定[J]. 中国生物工程杂志, 2021, 41(7): 42-49.
[2] 陈文洁,苗先锋. 抗体偶联药物国内研发现状及企业布局分析[J]. 中国生物工程杂志, 2021, 41(6): 105-110.
[3] 许叶春,柳红,李剑峰,沈敬山,蒋华良. 抗新冠肺炎药物研究进展[J]. 中国生物工程杂志, 2021, 41(6): 111-118.
[4] 史瑞,严景华. 抗新型冠状病毒单克隆中和抗体药物研发进展*[J]. 中国生物工程杂志, 2021, 41(6): 129-135.
[5] 原博,王杰文,康广博,黄鹤. 双特异性纳米抗体的研究进展及其应用 *[J]. 中国生物工程杂志, 2021, 41(2/3): 78-88.
[6] 毛开云,李荣,李丹丹,赵若春,范月蕾,江洪波. 全球双特异性抗体药物研发格局分析*[J]. 中国生物工程杂志, 2021, 41(11): 110-118.
[7] 张赛,向乐,李林海,李辉军,王刚,钱纯亘. 新型冠状病毒(2019-nCoV)IgM /IgG抗体检测试剂的研制及性能评价[J]. 中国生物工程杂志, 2020, 40(8): 1-9.
[8] 赵妍淑,张金华,宋浩. 工程原核生物和酵母菌中生产单克隆抗体和抗体片段研究进展 *[J]. 中国生物工程杂志, 2020, 40(8): 74-83.
[9] 蔺士新,刘东晨,雷云,熊盛,谢秋玲. TNF-α纳米抗体的筛选、表达及特异性检测 *[J]. 中国生物工程杂志, 2020, 40(7): 15-21.
[10] 杨笑莹,李梦,赵威,唐敏,张志谦. 抗α2δ1/CD3双特异性抗体的制备和功能的初步研究 *[J]. 中国生物工程杂志, 2020, 40(7): 9-14.
[11] 武瑞君,李治非,张鑫,濮润,敖翼,孙燕荣. 新冠病毒抗体药物研发进展及展望分析[J]. 中国生物工程杂志, 2020, 40(5): 1-6.
[12] 杨丽,石晓宇,李文蕾,李剑,徐寒梅. 构建噬菌体展示抗体库过程中电穿孔法的条件优化[J]. 中国生物工程杂志, 2020, 40(4): 42-48.
[13] 李彤彤,宋彩玲,杨凯越,王文静,陈慧宇,刘明. 抗犬细小病毒VP2蛋白单链抗体的制备与中和活性研究 *[J]. 中国生物工程杂志, 2020, 40(4): 10-16.
[14] 王猛,宋慧茹,程雨洁,王毅,杨波,胡征. 以核糖体蛋白L7/L12为分子标志物精准检测肺炎链球菌的研究 *[J]. 中国生物工程杂志, 2020, 40(4): 34-41.
[15] 钱颖,钱晨,白晓庆,王晶晶. 免疫佐剂在肿瘤免疫疗法中的应用进展 *[J]. 中国生物工程杂志, 2020, 40(3): 96-103.