Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2011, Vol. 31 Issue (7): 65-71    
研究报告     
黄萎病菌胁迫下野生茄子托鲁巴姆防卫反应的生理生化分析
王忠1,2, 杨清2
1. 江苏省中国科学院植物研究所植物多样性与系统演化研究中心 南京 210014;
2. 南京农业大学生命科学学院作物遗传与种质创新国家重点实验室 南京 210095
Physio-Biochemical Analysis of Solanum torvum Defense Against Verticillium dahliae Infection
WANG Zhong1,2, YANG Qing2
1. Research Center of Systematic and Evolutionary Botany Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210095, China;
2. State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
 全文: PDF(745 KB)   HTML
摘要:

以野生茄子托鲁巴姆(Solanum torvum Swartz)和苏崎茄(Solanum melongena L.)为主要材料,通过比较两种茄子在大丽轮枝菌(Verticillium dahliae Kleb)侵染过程中体内的生理生化指标变化,分析托鲁巴姆对黄萎病的抗性响应机制。结果表明:(1)与苏崎茄植株相比,托鲁巴姆植株表现出很强的自我防御和自我修复能力。(2)托鲁巴姆体内存在的活性氧清除系统(如SOD、POD、CAT等酶的活性)高于苏崎茄;在侵染后,托鲁巴姆体内各种酶的活性快速增加,其幅度高于苏崎茄;MDA的变化则恰恰相反。这个结果提示,黄萎病菌胁迫可能激活了托鲁巴姆体内活性氧清除系统,从而加快了某些防御物质(如木质素和抗菌物质绿原酸等)的形成,同时减缓或降低MDA等有害物质在植株体内的积累。(3)黄萎病菌侵染后各生理指标的响应时间表现出差异。托鲁巴姆中POD、PAL的活性和可溶性蛋白含量在侵染后的12h内就迅速作出响应(POD增加、PAL和可溶性蛋白减少);而SOD、PPO、CAT的活性和MDA的含量则在处理后初始阶段(至少12h)进行了一些调整,随后才进入持续性的增加或减少阶段。由此可见,托鲁巴姆对黄萎病病菌侵染的响应具有时序性,其体内POD酶、PAL酶和可溶性蛋白首先参与植物的防卫反应以应对黄萎病的胁迫,其它酶随后参与响应,它们的共同作用形成对黄萎病菌的有效防卫。

关键词: 托鲁巴姆黄萎病响应机制    
Abstract:

The physiological mechanisms in response to Verticillium wilt were analyzed by comparing the physiological indicators of Solanum torvum and Suqi eggplant infected with Verticillium. dahliae Kleb. The results showed that: (1) S. torvum exhibits the strong capability of egodefense and self-rehabilitation, compared with the cultivar Suqi. (2) The active oxygen scavenging system (such as: SOD, POD, CAT enzymes activity) in S. torvum was higher than in Suqi during the treatment. MDA content in S. torvum decreased after treatment, but increased in the Suqi. The results suggested that infection might activate active oxygen scavenging system in vivo, then producing certain defensive substances (such as lignin and chlorogenic acid et al.) quickly, while reducing the accumulation of MDA in the body. (3) The response time of the physiological indicators in S. torvum in response to V. dahliae was different: Activity of POD, PAL and content of soluble protein in S. torvum change rapidly within 12h, and then, change in the activity of SOD, PPO, CAT and MDA content. Eventually, S. torvum resist Verticillium. Wilt infection effectively by combinations of each enzyme.

Key words: Solanum torvum    Verticillium wilt    Response mechanism
收稿日期: 2010-12-28 出版日期: 2011-07-25
ZTFLH:  Q945  
基金资助:

国家自然科学基金资助项目(30930004)

服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
杨清
王忠

引用本文:

王忠, 杨清. 黄萎病菌胁迫下野生茄子托鲁巴姆防卫反应的生理生化分析[J]. 中国生物工程杂志, 2011, 31(7): 65-71.

WANG Zhong, YANG Qing. Physio-Biochemical Analysis of Solanum torvum Defense Against Verticillium dahliae Infection. China Biotechnology, 2011, 31(7): 65-71.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2011/V31/I7/65


[1] 李怀芳,刘凤权,郭小密. 园艺植物病理学,北京:中国农业大学出版社,2001. Li H F, Liu F Q, Guo X M. Horticulture Plant Pathology, Beijing: China Agricultural University Press, 2001.

[2] 周宝利,林桂荣,高艳新,等. 嫁接茄抗黄萎病特性与苯丙烷类代谢的关系. 沈阳农业大学学报,2000,31(1):57-60. Zhou B L, Lin G R, Gao Y X, et al. Journal of Shenyang Agricultural University, 2000, 31(1): 57-60.

[3] 冯东昕,李宝栋,马宾生,等. 嫁接对茄子黄萎病的抗性及某些生物学性状的影响. 中国蔬菜,2000,(4):13-15. Feng D X, Li B D, Ma B S, et al. China Vegetables, 2000, (4): 13-15.

[4] Deborah S D, Palaniswami A, Vidhyasekaran P, et al. J Plant Dis Prot, 2001, 108:204-216.

[5] Li L, Steffens J C. Overexpression of polyphenol oxidase in transgenic tomato plants results in enhanced bacterial disease resistance. Planta, 2002, 215:239-247.

[6] Amaresh C, Raghvendra S, Archana D, et al. Change in phenylalanine ammonia lyase activity and isozyme patterns of polyphenol oxidase and peroxidase by salicylic acid leading to enhance resistance in cowpea against Rhizoctonia solani. Acta Physiol Plant, 2007, 29:361-367.

[7] Vidhyaskaran P. Fungal Pathogenesis in Plants and Crops. New York: Marcel Dekker, Inc., 1997. 380-381.

[8] 叶鹏盛,曾华兰,李琼芳. 茄子品种抗黄萎病性鉴定方法研究. 西南农业学报,2006,(6):110. Ye P S, Zeng H L, Li Q F. Southwest China Journal of Agricultural Sciences, 2006, (6): 110.

[9] 李合生.植物生理生化实验原理和技术. 北京:高等教育出版社,2000,164-165. Li H S. Principles of Plant Physiology and Biochemistry and Technology Experiments. Beijing: Higher Education Press, 2000, 164-165.

[10] Giannopolitis C N, Rice S K. Superoxide dismutase. Purification and quantitative relationship with water-solube proteinin breeding. Plant Physiol, 1977, (59): 315-318.

[11] 李保聚,李风云.黄瓜不同抗性品种感染黑星病菌后过氧化物酶和多酚氧化酶的变化. 中国农业科学,1998,31(1):86-88. Li B J, Li F Y. Scientia Agricultura Sinica, 1998, 31(1): 86-88.

[12] 欧阳光察.植物生理学实验手册. 上海:上海科学技术出版社,1985,196. Ouyang G C. Plant Physiology Lab Manual. Shanghai: Shanghai Science and Technology Press, 1985, 196.

[13] 汤章城.现代植物生理学实验指南. 北京:科学出版社,1999,305. Tang Z C. Experimental Guide of Modern Plant Physiology. Beijing: Science Press, 1999, 305.

[14] Maksimov I V, Cherepanova E A, Surina O B, et al. The effect of salicylic acid on peroxidase activity in wheat calli cocultured with the bunt pathogen Tilletia caries. Russian Journal of Plant Physiology, 2004, 51(4): 480-485.

[15] Umesha S. Phenylalanine Ammonia Lyase Activity in Tomato Seedlings and Its Relationship to Bacterial Canker Disease Resistance. Phytoparasitica, 2006, 34(1):68-71.

[16] Daniele D R, Amanda J S, Nicoletta P. A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutrition, Metabolism﹠Cardiovascular Diseases, 2005, 15(4): 316-328.

[17] 周宝利,姜荷,赵鑫. 不同砧木嫁接茄子抗黄萎病特性及其与根系分泌物关系. 沈阳农业大学学报,2001,32(6):414-417. Zhou B L, Jiang H. Journal of Shenyang Agricultural University, 2001, 32(6): 414-417.

[18] 林密,付余,卢淑雯,等. 黑龙江省茄子品种资源黄萎病抗性鉴定. 北方园艺,2000,2:42-43. Lin M, Fu Y, Lu S W, et al. Northern Horticulture, 2000, 2:42-43.

[19] Buonario R, Torre G D, Mobtalbini P. Soluble superioxide dismutase (SOD) in susceptible and resistant host-parasite complex of phaseolus unlgaris and Uromyces phaseoli. Physiol. Plant Pathol., 1987, 31:173-184.

[20] 王雅平,刘伊强. 小麦对赤霉病抗性不同品种的SOD活性. 植物生理学报,1993,19(4):553-558. Wang Y P, Liu Y Q. Acta Photophysiologica Sinica, 1993, 19(4): 553-558.

[21] 张俊华,崔崇士. 不同抗性南瓜品种感染Phytophthoracapsici病菌后几种酶活性测定. 东北农业大学学报, 2003,34 (2):124-128. Zhang J H, Cui C S. Journal of Northeast Agricultural University, 2003, 34(2):124-128.

[22] Daniel A R, Oliveiro G F, Paulo M. Phenol contents, oxidase activities, and the resistance of coffee to the leaf miner leucoptera coffeella. J Chem Ecol, 2006, 32: 1977-1988.

[23] Joseph L M, Tan T K, Wong S M, et al. Antifungal effects of hydrogen peroxide and peroxidase on spore germ ination and mycelialgrow of Pseudocercospora species. Canadian Journal of Botany, 1998, 76 (12) :2119-2124.

[24] 吕晓梅,许向阳,李景富. 野生番茄抗叶霉病生理指标的研究. 东北农业大学学报, 2003,34(1):24-29. Lu X M, Xu X Y, Li J F. Journal of Northeast Agricultural University, 2003, 34(1): 24-29.

[25] 冯壮志.番茄抗青枯病生理机制及分子标记的研究. 浙江大学硕士论文,2005. Feng Z Z. Studies on physiological mechanism and molecular markers in tomato resistant to bacterial wilt. Master Dissertation of Zhejiang University, 2005.

[26] Eiichi N, Kazuhito K, Noriyuki D, et al. Elicitation of primary and secondary metabolism during defense in the potato. J Gen Plant Pathol, 2003, 69:378-384.

[27] 魏建华,宋艳茹. 木质素生物合成途径及调控的研究进展. 植物学报, 2001, 43(8):771-779. Wei J H, Song Y R. Acta Botanica Sinica, 2001, 43(8): 771-779.

[28] Dat J F, Pellinen R, Beeckman T, et al. Changes in hydrogen peroxide homeostasis trigger an active cell death process in tobacco. Plant J, 2003, 33(4): 621-632.

[29] Jones J. Plant pathology. Paranoid plants have their genes examined. Curr Biol, 1996, 4 (8): 749-751.

[30] Polidoros A N, Mylona P V, Scandalios J G. Transgenic tobacco plants expressing the maize Cat2 gene have altered catalase levels that affect plant-pathogen interactions and resistance to oxidative stress.Transgenic Research, 2001, 10(6): 555-569.

[1] 汪亚俊, 孙明哲, 李爱芬, 张成武. 不同氮素水平对产油尖状栅藻生长及光合生理的影响[J]. 中国生物工程杂志, 2014, 34(12): 51-58.
[2] 于欣鑫, 高晋君, 李勇, 李晶. flg22诱导的拟南芥转录组分析及芥子油苷代谢途径的变化[J]. 中国生物工程杂志, 2014, 34(5): 30-38.
[3] 朱先灿 宋凤斌. 植物菌根共生磷酸盐转运蛋白[J]. 中国生物工程杂志, 2009, 29(12): 108-113.