产喜树碱喜树内生真菌的筛选及喜树内生真菌的SRAP分析

李霞, 刘佳佳, 陈建华, 栾明宝, 殷珍珍, 杨栋梁

中国生物工程杂志 ›› 2011, Vol. 31 ›› Issue (7) : 60-64.

PDF(411 KB)
PDF(411 KB)
中国生物工程杂志 ›› 2011, Vol. 31 ›› Issue (7) : 60-64.
研究报告

产喜树碱喜树内生真菌的筛选及喜树内生真菌的SRAP分析

  • 李霞1, 刘佳佳1, 陈建华2, 栾明宝2, 殷珍珍1, 杨栋梁1
作者信息 +

Screening of Camptothecin Production and SRAP Analysis of Endophytic Fungi from Camptotheca acuminata Decne

  • LI Xia1, LIU Jia-jia1, CHEN Jian-hua2, LUAN Ming-bao2, YIN Zhen-zhen1, YANG Dong-liang1
Author information +
文章历史 +

摘要

生活在宿主植物里的内生真菌是很重要的药用资源。喜树是中国的传统药用植物。从喜树植物中分离得到了大约50种菌株,其中一株产喜树碱的菌株通过形态学鉴定为青霉属,这是首次在喜树植物中发现产喜树碱的青霉属菌株。为研究简单序列重复相关序列扩增多态性(SRAP)方法在喜树内生真菌中应用的可行性,选择了十株喜树内生真菌进行SRAP多态性分析。SRAP引物共扩增出1 295条带,而这些菌株也被分为三大类。这些结果表明,SRAP研究喜树内生真菌具有高效性,是讨论喜树内生真菌的遗传多样性的有效方法。

Abstract

Endophytic fungi, lived in stems and leaves of host plants, were supposed to be effective or novel sources for therapeutic compounds. Camptotheca acuminata Decne is a traditional medical plant in China. About 50 endophytic fungi were isolated from barks of C. acuminata. A new fungus producing camptothecin (CPT) was identified as a Penicillium based on its morphological features. Ten endophytic fungi of C. acuminata were chosen to be amplified using molecular maker sequence related amplified polymorphism (SRAP). The combinations of SRAP primers turned out to be polymorphic and a total of 1 295 polymorphic bands were obtained. These strains were grouped into 3 main clusters and revealed that SRAP could isolate the strains of C. acuminata efficiently. It also provided evidence for discussing the genetic diversities of species in C. acuminata with SRAP molecular method.

关键词

内生真菌 / 青霉属 / 分子标记 / 遗传多样性

Key words

Endophytic fungus / Penicillium / Molecular maker / Genetic diversity

引用本文

导出引用
李霞, 刘佳佳, 陈建华, 栾明宝, 殷珍珍, 杨栋梁. 产喜树碱喜树内生真菌的筛选及喜树内生真菌的SRAP分析[J]. 中国生物工程杂志, 2011, 31(7): 60-64
LI Xia, LIU Jia-jia, CHEN Jian-hua, LUAN Ming-bao, YIN Zhen-zhen, YANG Dong-liang. Screening of Camptothecin Production and SRAP Analysis of Endophytic Fungi from Camptotheca acuminata Decne[J]. China Biotechnology, 2011, 31(7): 60-64
中图分类号: Q75   

参考文献


[1] Petrini O. Fungal endophytes of tree leaves. In: Andrews J H, Hirano S. Microbial Ecology of leaves. New York : Spinger-Verlag press, 1991.179-197.


[2] Strobel G, Stierle A, Stierle D. Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science, 1993, 260(5105): 214-216.


[3] Silca G H, Teles H L, Trevisan H C, et al. New bioactive metabolites produced by Phomopsis cassiae, an endophytic fungus in Cassia spectabilis. Journal of the Brazilian Chemical Society, 2005, 16(6B): 1463-1466.


[4] Lu H, Zou W X, Meng J C. New bioactive metabolites produced by Colletotrichum sp. 1, an endophytic fungus in Artemisia annu. Plant Science, 2000, 151(1): 67-73.


[5] Li Y, Song Y C, Liu J Y, et al. Anti-Helicobacter pylori substances from endophytic fungal cultures. World Journal of Microbiology & Biotechnology, 2005, 21(4): 553-558.


[6] Wall M E, Wani M C, Cook C E. The Isolation and Structure of Camptothecin, a Novel Alkaloidal Leukemia and Tumor Inhibitor from Camptotheca acuminata. Journal of American Chemical Society, 1966, 88(16): 3888-3890.


[7] Kjeldsen E, Svejstrup J Q, Gromova I I, et al. Camptothecin inhibits both the cleavage and relegation reactions of eukaryotic DNA topoisomerase I. Journal of Molecular Biology, 1992, 28(4): 1025-1030.


[8] Liu K H, Ding X W, Deng B W, et al. 10-Hydroxycamptothecin produced by a new endophytic Xylaria sp., M20, from Camptotheca acuminata. Biotechnology Letters, 2010, 32(5): 689-693.


[9] Soucik K, Sebastian Z, Michael S. An endophytic fungus from Camptotheca acuminata that produces camptothecin and analogues. Journal of Natural Products, 2009, 72(1): 2-7.

[10] Yuan L, Lin X, Zhao P J, et al. New Polyketides from Endophytic Diaporthe sp. XZ-07. Helvetica Chimica Acta, 2009, 92(6):184-190.

[11] Li G, Qurios C F. Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theoretical and Applied Genetics, 2001, 103(2-3): 455-461.

[12] Ma D L, Yang G T, Mu L Q, et al. Application of SRAP in the genetic diversity of Tricholoma matsutake in northeastern China. African Journal of Biotechnology, 2010, 9(38): 6244-6250.

[13] Yu M Y, Ma B, Luo X, et al. Molecular diversity of Auricularia polytricha revealed by inter-simple sequence repeat and sequence-related amplified polymorphism markers. Current Microbiology, 2008, 56(3): 240-245.

[14] Sun S J, Gao W, Lin S Q. Analysis of genetic diversity in Ganoderma population with a novel molecular marker SRAP. Applied Microbiology and Biotechnology, 2006, 72(3): 537-543.

[15] Huang Y J, Wang J F, Li G L, et al. Antitumor and antifungal activities in endophytic fungi isolated from pharmaceutical plants. FEMS Immunology and Medical Microbiology, 2001, 31(2): 163-167.

[16] Zeng F Y, Zhang Y Z. Preparation of edible fungus DNA from Polysaccharide rich sample. Acta Edulis Fungi, 1996, 3:13-17.

[17] Bassam B J, Gresshoff P M. Silver staining DNA in polyacrylamide gels. Natural Protocols, 2007, 2(11): 2649-2654.

[18] Nei M, Li W H. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceedings of the National Academy of Sciences (USA), 1979, 79(10): 5269-5273.

[19] Sneath P H A. Numerical taxonomy. San Francisco: Springer Press, 2005.39-42.

基金

国家自然科学基金(30900913)、国家教育部重点项目(03126)资助项目


PDF(411 KB)

Accesses

Citation

Detail

段落导航
相关文章

/