Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2011, Vol. 31 Issue (7): 126-132    
综述     
农杆菌vir基因诱导因子研究进展
邹智
中国热带农业科学院橡胶研究所 农业部橡胶树生物学重点开放实验室 儋州 571737
Advances on Factors Influencing Induction of Agrobacterium tumefaciens Virulence Genes
ZOU Zhi
Key Laboratory of Rubber Biology, Ministry of Agriculture/Rubber Research Institute (RRI, Chinese Academy of Tropical Agricultural Sciences (CATAS, Danzhou 571737, China
 全文: PDF(553 KB)   HTML
摘要:

在众多遗传转化法中,农杆菌(Agrobacterium tumefaciens)介导法以易操作、低费用、插入片段明确、拷贝数低等独特优点成为植物遗传转化的首选。然而,至今仍有许多物种不能被农杆菌转化。研究表明,农杆菌的转化能力是由位于染色体基因组之外Ti质粒上的vir基因决定的。在所有vir基因中,除virA和virG组成型表达外,其它vir基因的表达均需酚类化合物的诱导;糖类物质可增强酚类化合物对vir基因的诱导;低磷酸和酸性pH环境也可促进vir基因的诱导表达。文章论述了酚类化合物、糖类物质、低磷酸、酸性pH和培养温度等因素对农杆菌vir基因诱导表达的影响,以期为更好地利用这一天然载体及为提高转化效率提供依据。

关键词: 根癌农杆菌vir基因诱导表达    
Abstract:

With advantages of easy-to-operate, low-cost, low copies and preferential integration of defined T-DNA into transcriptionally active regions of chromosomes without vector DNAs, Agrobacterium is employed for genetic modification of plants routinely. However, until recently, still there are a great many species recalcitrant to Agrobacterium-mediated transformation. Data suggest that the infection capability is designed by virulence (vir) genes of Ti plasmid outside of A. tumefaciens genome. Among all vir genes, virA and virG express constitutively, while other vir genes need phenolic compounds for induction. Besides, carbohydrates can enhance vir induction by phenolic compounds, while low phosphate and acidic pH environmental conditions may also increase induced expression of vir genes. In order to better utilize Agrobacterium and improve its efficiency for applications in research and biotechnology, molecular mechanisms for vir induction by factors such as phenolic compounds, carbohydrates, low phosphate, acidic pH conditions and incubation temperature are discussed.

Key words: Agrobacterium tumefaciens    Virulence genes    Induced expression
收稿日期: 2010-12-07 出版日期: 2011-07-25
ZTFLH:  Q819  
基金资助:

新疆维吾尔自治区自然科学基金(2010211A01)、新疆高校科研计划重点项目( XJEDU2008I01)、新疆生物资源基因工程重点实验室开放基金( XJDX0201-2009-03)资助项目

服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
邹智

引用本文:

邹智. 农杆菌vir基因诱导因子研究进展[J]. 中国生物工程杂志, 2011, 31(7): 126-132.

ZOU Zhi. Advances on Factors Influencing Induction of Agrobacterium tumefaciens Virulence Genes. China Biotechnology, 2011, 31(7): 126-132.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2011/V31/I7/126


[1] Gelvin S B. Agrobacterium-mediated plant transformation: the biology behind the "gene-jockeying" tool. Microbiol Mol Biol Rev, 2003, 67(1): 16-37.

[2] Gelvin S B. Plant proteins involved in Agrobacterium-mediated genetic transformation. Annu Rev Phytopathol, 2010, 48: 45-68.

[3] Pitzschke A, Hirt H. New insights into an old story: Agrobacterium-induced tumour formation in plants by plant transformation. EMBO J, 2010, 29(6): 1021-1032.

[4] Lacroix B, Tzfira T, Vainstein A, et al. A case of promiscuity: Agrobacteriums endless hunt for new partners. Trends Genet, 2006, 22(1): 29-7.

[5] Winans S C. Two-way chemical signaling in Agrobacterium-plant interactions. Microbiol Rev, 1992, 56(1): 12-31.

[6] Shimoda N, Toyoda-Yamamoto A, Nagamine J, et al. Control of expression of Agrobacterium vir genes by synergistic actions of phenolic signal molecules and monosaccharides. Proc Natl Acad Sci U S A, 1990, 87: 6684-6688.

[7] Shimoda N, Toyoda-Yamamoto A, Aoki S, et al. Genetic evidence for an interaction between the VirA sensor protein and the ChvE sugar-binding protein of Agrobacterium. J Biol Chem, 1993, 268(35): 26552-26558.

[8] McCullen C A, Binns A N. Agrobacterium tumefaciens and plant cell interactions and activities required for interkingdom macromolecular transfer. Annu Rev Cell Dev Biol, 2006, 22: 101-127.

[9] 邓艺,曾炳山, 赵思东, 等. 乙酰丁香酮在农杆菌介导的遗传转化中的作用机制及应用. 安徽农业科学, 2010, 38(5): 2229-2232. Deng Y, Zeng B S, Zhao S D, et al. Anhui Agri Bull, 2010, 38(5): 2229-2232.

[10] Brencic A, Winans S C. Detection of and response to signals involved in host-microbe interactions by plant-associated bacteria. Microbiol Mol Biol Rev, 2005, 69(1): 155-194.

[11] Braun A. Thermal studies on the factors responsible for tumour induction in crown gall. Am J Bot, 1947, 34: 234-240.

[12] Stachel S E, Nester E W. The genetic and transcriptional organization of the vir region of the A6 Ti plasmid of Agrobacterium tumefaciens. EMBO J, 1986, 5(7): 1445-1454.

[13] Zhu J, Oger P M, Schrammeijer B, et al. The bases of crown gall tumorigenesis. J Bacteriol, 2000, 182(14): 3885-3895.

[14] Stachel S E, Zambryski P C. virA and virG control the plant-induced activation of the T-DNA transfer process of A. tumefaciens. Cell, 1986, 46(3): 325-333.

[15] Toyoda-yamamoto A, Shimoda N, Machida Y. Genetic analysis of the signal-sensing region of the histidine protein kinase VirA of Agrobacterium tumefaciens. Mol Gen Genet, 2000, 263(6): 939-947.

[16] Chang C H, Winans S C. Functional roles assigned to the periplasmic, linker, and receiver domains of the Agrobacterium tumefaciens VirA protein. J Bacteriol, 1992, 174(21): 7033-7039.

[17] Stachel S E, Nester E W, Zambryski P C. A plant cell factor induces Agrobacterium tumefaciens vir gene expression. Proc Natl Acad Sci U S A, 1986, 83: 379-383.

[18] Chang C H, Winans S C. Resection and mutagenesis of the acid pH-inducible P2 promoter of the Agrobacterium tumefaciens virG gene. J Bacteriol, 1996, 178(15): 4717-4720.

[19] Gao R, Lynn D G. Environmental pH sensing: resolving the VirA/VirG two-component system inputs for Agrobacterium pathogenesis. J Bacteriol, 2005, 187(6): 2182-2189.

[20] Wise A A, Voinov L, Binns A N. Intersubunit complementation of sugar signal transduction inVirA heterodimers and posttranslational regulation ofVirA activity in Agrobacterium tumefaciens. J Bacteriol, 2005, 187: 213-223.

[21] Mukhopadhyay A, GaoR, Lynn D G. Integrating input from multiple signals: the VirA/VirG two-component system of Agrobacterium tumefaciens. Chembiochem, 2004, 5(11): 1535-1542.

[22] Ankenbauer R G, Nester E W. Sugar-mediated induction of Agrobacterium tumefaciens virulence genes: structural specificity and activities of monosaccharides. J Bacteriol, 1990, 172(11): 6442-6446.

[23] Stachel S E, Messens E, Van Montagu M, et al. Identification of the signal molecules produced by wounded plant cells that activate T-DNA transfer in Agrobacterium tumefaciens. Nature, 1985, 318: 624-629.

[24] Dixon R A, Achnine L, Kota P, et al. The phenylpropanoid pathway and plant defense—a genomics perspective. Mol Plant Pathol, 2002, 3: 371-390.

[25] Palmer A G, Gao R, Maresh J, et al. Chemical biology of multi-host/pathogen interactions: chemical perception and metabolic complementation. Annu Rev Phytopathol, 2004, 42: 439-464.

[26] Joubert P, Beaupére D, Leliévre P, et al. Effects of phenolic compounds on Agrobacterium vir genes and gene transfer induction—a plausible molecular mechanism of pheno binding protein activation. Plant Sci, 2002, 162: 733-743.

[27] Turk S C, van Lange R P, Regensburg-Tuink T J, et al. Localization of the VirA domain involved in acetosyringone-mediated vir gene induction in Agrobacterium tumefaciens. Plant Mol Biol, 1994, 25(5): 899-907.

[28] Campbell A M, Tok J B, Zhang J, et al. Xenognosin sensing in virulence: is there a phenol receptor in Agrobacterium tumefaciens? Chem Biol, 2000, 7(1): 65-76.

[29] Peng W T, Lee Y W, Nester E W. The phenolic recognition profiles of the Agrobacterium tumefaciens VirA protein are broadened by a high level of the sugar binding protein ChvE. J Bacteriol, 1998, 180(21): 5632-5638.

[30] Cangelosi G A, Ankenbauer R G, Nester E W. Sugars induce the Agrobacterium virulence genes through a periplasmic binding protein and a transmembrane signal protein. Proc Natl Acad Sci U S A, 1990, 87: 6708-6712.

[31] He F, Nair G R, Soto C S, et al. Molecular basis of ChvE function in sugar binding, sugar utilization, and virulence in Agrobacterium tumefaciens. J Bacteriol, 2009, 191(18): 5802-5813.

[32] Doty S L, Chang M, Nester E W. The chromosomal virulence gene, chvE, of Agrobacterium tumefaciens is regulated by a LysR family member. J Bacteriol, 1993, 175(24): 7880-7886.

[33] Doty S L, Yu M C, Lundin J I, et al. Mutational analysis of the input domain of the VirA protein of Agrobacterium tumefaciens. J Bacteriol, 1996, 178(4): 961-970.

[34] Yuan Z C, Liu P, Saenkham P, et al. Transcriptome profiling and functional analysis of Agrobacterium tumefaciens reveals a general conserved response to acidic conditions (pH 5.5) and a complex acid-mediated signaling involved in Agrobacterium-plant interactions. J Bacteriol, 2008, 190: 494-507.

[35] Bearson S, Bearson B, Foster J W. Acid stress responses in enterobacteria. FEMS Microbiol Lett, 1997, 147(2): 173-180.

[36] Li L, Jia Y, Hou Q, et al. A global pH sensor: Agrobacterium sensor protein ChvG regulates acid-inducibile genes on its two chromosomes and Ti plasmid. Proc Natl Acad Sci U S A, 2002, 99(19): 12369-12374.

[37] Winans S C. Transcriptional induction of an Agrobacterium regulatory gene at tandem promoters by plant-released phenolic compounds, phosphate starvation, and acidic growth media. J Bacteriol, 1990, 172(5): 2433-2438.

[38] Chen C Y, Winans S C. Controlled expression of the transcriptional activator gene virG in Agrobacterium tumefaciens by using the Escherichia coli lac promoter. J Bacteriol, 1991, 173(3): 1139-1144.

[39] Charles T C, Nester E W. A chromosomally encoded two-component sensory transduction system is required for virulence of Agrobacterium tumefaciens. J Bacteriol, 1993, 175(20): 6614-6625.

[40] Mantis N J, Winans S C. The chromosomal response regulatory gene chvI of Agrobacterium tumefaciens complements an Escherichia coli phoB mutation and is required for virulence. J Bacteriol, 1993, 175(20): 6626-6636.

[41] Cangelosi G A, Best E A, Martinetti G, et al. Genetic analysis of Agrobacterium. Methods Enzymol, 1991, 204: 384-397.

[42] Chang C H, Zhu J, Winans S C. Pleiotropic phenotypes caused by genetic ablation of the receiver module of the Agrobacterium tumefaciens VirA protein. J Bacteriol, 1996, 178(15): 4710-4716.

[43] Melchers L S, Regensburg-Tunk TJ, Bourret RB, et al. Membrane topology and functional analysis of the sensory protein VirA of Agrobacterium tumefaciens. EMBO J, 1989, 8(7): 1919-1925.

[44] Fullner K J, Nester E W. Temperature affects the T-DNA transfer machinery of Agrobacterium tumefaciens. J Bacteriol, 1996, 178(6): 1498-1504.

[45] Fullner K J, Lara J C, Nester E W. Pilus assembly by Agrobacterium T-DNA transfer genes. Science, 1996, 273(5278): 1107-1109.

[46] Dillen W, De Clercq J, Kapila J, et al. The effect of temperature on Agrobacterium tumefaciens-mediated gene transfer to plants. Plant J, 1997, 12: 1459-1463.

[47] Alt-Mrbe J, Neddermann P, von Lintig J, et al. Temperature-sensitive step in Ti plasmid vir-region induction and correlation with cytokinin secretion by Agrobacteria. Mol Gen Genet, 1988, 213: 1-8.

[48] Alt-Mrbe J, Kühlmann H, Schrder J. Differences in induction of Ti plasmid virulence genes virG and virD, and continued control of virD expression by four external factors. Mol Plant-Microbe Interact, 1989, 2(6): 301-308.

[49] Turk S C, Melchers L S, den Dulk-Ras H, et al. Environmental conditions differentially affect vir gene induction in different Agrobacterium strains. Role of the VirA sensor protein. Plant Mol Biol, 1991, 16(6): 1051-1059.

[50] Jin S, Song Y N, Deng W Y, et al. The regulatory VirA protein of Agrobacterium tumefaciens does not function at elevated temperatures. J Bacteriol, 1993, 175(21): 6830-6835.

[51] Banta L M, Bohne J, Lovejoy S D, et al. Stability of the Agrobacterium tumefaciens VirB10 protein is modulated by growth temperature and periplasmic osmoadaption. J Bacteriol, 1998, 180(24): 6597-6606.

[52] Lai E M, Chesnokova O, Banta L M, et al. Genetic and environmental factors affecting T-pilin export and T-pilus biogenesis in relation to flagellation of Agrobacterium tumefaciens. J Bacteriol, 2000, 182(13): 3705-3716.

[53] Baron C, Domke N, Beinhofer M, et al. Elevated temperature differentially affects virulence, VirB protein accumulation, and T-pilus formation in different Agrobacterium tumefaciens and Agrobacterium vitis strains. J Bacteriol, 2001, 183(23): 6852-6861.

[54] Jin S, Song Y, Pan S Q, et al. Characterization of a virG mutation that confers constitutive virulence gene expression in Agrobacterium. Mol Microbiol, 1993, 7(4): 555-562.

[55] Wise A A, Fang F, Lin Y H, et al. The receiver domain of hybrid histidine kinase VirA: an enhancing factor for vir gene expression in Agrobacterium tumefaciens. J Bacteriol, 2010, 192(6): 1534-1542.

[56] 邹智, 吴刚, 武玉花, 等. 植物源内含子对GUS表达模式的影响. 生物技术通报, 2008, 197(6): 78-82. Zou Z, Wu G, Wu Y H, et al. Biotech Bull, 2008, 197(6): 78-82.

[1] 付大伟,孙莹莹,徐伟. 融合蛋白NusA-hRI的高效异源表达、纯化及活性分析[J]. 中国生物工程杂志, 2019, 39(3): 21-28.
[2] 苏燕南, 薛正莲, 陈涛, 马琦亚. 粘质沙雷氏菌PL-06磷脂酶A1基因大肠杆菌优化表达[J]. 中国生物工程杂志, 2013, 33(7): 36-42.
[3] 朱彩虹, 李水根, 齐力旺, 韩素英. 农杆菌介导的日本落叶松胚性细胞遗传转化研究[J]. 中国生物工程杂志, 2013, 33(5): 75-80.
[4] 李美玉, 李锐, 于敏, 王胜华, 陈放. 根癌农杆菌介导的金发草遗传转化条件的优化[J]. 中国生物工程杂志, 2013, 33(1): 41-46.
[5] 黎明, 刘萌, 黄云雁, 周丽颖, 孙昕, 路福平. 根癌农杆菌介导的黑曲霉遗传转化体系的建立及优化[J]. 中国生物工程杂志, 2012, 32(01): 56-63.
[6] 段兴鹏 唐俊 陈捷 陈红漫 任大明. 根癌农杆菌介导深绿木霉高产漆酶菌株的构建和筛选[J]. 中国生物工程杂志, 2010, 30(07): 0-0.
[7] 邓永康1,吴民泸2,刘盛邦1,杜林方1,伍黎黎1,李曼1,孟延发1. 乳糖诱导重组尿酸酶基因在大肠杆菌中的表达[J]. 中国生物工程杂志, 2009, 29(07): 74-79.
[8] 刘石娟,李秀兰. ocs/mas|一个受损伤和植物激素诱导的嵌合启动子的构建与功能分析[J]. 中国生物工程杂志, 2009, 29(07): 37-42.
[9] 黄亚丽,蒋细良,田云龙,郭萍,朱昌雄. 根癌农杆菌介导的哈茨木霉菌遗传转化的研究[J]. 中国生物工程杂志, 2008, 28(3): 38-43.
[10] 杨书慧,赵胜军,刘军,闫达中,易丹. 乳糖诱导甜蛋白Monellin在大肠杆菌中的表达[J]. 中国生物工程杂志, 2008, 28(3): 53-58.
[11] 陈坚,薛绪潮,方国恩,苏长青,钱其军. RU486诱导调控载体的构建及体外表达[J]. 中国生物工程杂志, 2007, 27(6): 1-5.
[12] 张敏,赵丛,杜连祥,路福平,蔡兴旺. 中性蛋白酶基因诱导型表达分泌载体的构建[J]. 中国生物工程杂志, 2007, 27(3): 105-109.
[13] 方卫国, 张永军, 杨星勇, 裴炎. 根癌农杆菌介导真菌遗传转化的研究进展[J]. 中国生物工程杂志, 2002, 22(5): 40-44.
[14] 王义琴, 张利明, 李文彬, 孙勇如. 植物病原相关蛋白研究进展[J]. 中国生物工程杂志, 2000, 20(5): 36-38.
[15] 刘颖, 金振华, 林忠平. 利用PCR技术鉴别转化根癌农杆菌中外源和内源的GUS基因[J]. 中国生物工程杂志, 1995, 15(2): 46-47.