Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2011, Vol. 31 Issue (7): 121-125    
综述     
秀丽隐杆线虫先天免疫信号转导途径
王涛1,2, 杜丽1, 马琼1, 崔玉芳1
1. 军事医学科学院放射与辐射医学研究所 北京 100850;
2. 东南大学毫米波国家重点实验室 南京 210096
Current Progress on the Signal Transduction Pathway of Innate Immunity in Caenorhabditis Elegans
WANG Tao1,2, DU Li1, MA Qiong1, CUI Yu-fang1
1. Beijing Institute of Radiation Medicine, Academy of Military Medical Sciences, Beijing 100850, China;
2. State Key Laboratory of Millimeter Wave, Southeast University, Nanjing 210096, China
 全文: PDF(361 KB)   HTML
摘要:

秀丽隐杆线虫因其结构简单、易于培养、生命周期短等特点作为一种模式生物已广泛应用于神经系统、衰老机制及细胞程序性死亡的研究。与高等生物不同,秀丽隐杆线虫缺少适应性免疫途径,只有先天免疫途径在抗病原菌、抗氧化应激等方面发挥重要的作用。其体内的胰岛素/胰岛素样生长因子(insulin/ IGF-1)、转化生长因子β(transforming growth factor β,TGF-β)、丝裂原激活的蛋白激酶(mitogen activated protein kinases,MAPK)和细胞程序性死亡(programmed cell death,PCD)4条免疫相关信号转导途径在不同的环境发挥着主要作用。同时,秀丽隐杆线虫的先天免疫系统在进化中有许多保守之处,这为高等生物的免疫机制研究提供了新思路。据此,就有关秀丽隐杆线虫先天免疫信号转导途径的研究进展进行了简述,期望能为人类等高等生物相关联的免疫作用研究提供借鉴和参考。

关键词: 秀丽隐杆线虫先天免疫应激信号转导途径    
Abstract:

Caenorhabditis elegans(C. elegans) has been widely used as a model organism in the research of nervous system, aging mechanisms and programmed cell death, owing to its advantages of simple tissue structure, easily culture, short lifecycle. Different from higher organisms, C. elegans is lack of adaptive immune, only the innate immune plays an important role in anti-bacteria, anti-oxidative stress and so on. Four immune-related signal transduction pathway in C. elegans, including insulin-receptor-like pathway, transforming growth factor β(TGF-β) pathway, mitogen activated protein kinases(MAPK) pathway and programmed cell death(PCD) pathway play major roles in various conditions of environment. Meanwhile, the innate immune system of C. elegans is conservative in many respects, which provides new idea for research of immune mechanism in higher organisms. Accordingly.The progress on innate immune signal transduction pathway in C. elegans is reviewed, expecting to provide some reference for investigating innate immune related to higher organisms including mankinds.

Key words: Caenorhabditis elegans    Innate immunity    Stress    Signal transduction pathway
收稿日期: 2011-03-04 出版日期: 2011-07-25
ZTFLH:  Q74  
基金资助:

中国热带农业科学院橡胶研究所基本科研业务费专项资助项目(1630022011014)

服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王涛
杜丽
马琼
崔玉芳

引用本文:

王涛, 杜丽, 马琼, 崔玉芳. 秀丽隐杆线虫先天免疫信号转导途径[J]. 中国生物工程杂志, 2011, 31(7): 121-125.

WANG Tao, DU Li, MA Qiong, CUI Yu-fang. Current Progress on the Signal Transduction Pathway of Innate Immunity in Caenorhabditis Elegans. China Biotechnology, 2011, 31(7): 121-125.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2011/V31/I7/121


[1] Brenner S. The genetics of Caenorhabditis elegans. Genetics, 1974, 77(1):71-94.

[2] Couillauct C, Ewbank J J. Diverse bacteria are pathogens of C. elegans. Infect Immun, 2002, 70(8):4705-4707.

[3] Ewbank J J. Tackling both sides of the host-pathogen equation with Caenorhabditis elegans. Microbes Infect, 2002, 4(2):247-256.

[4] Kwon E S, Narasimhan S D, Yen K, et al. A new DAF-16 isoform regulates longevity. Nature, 2010, 466(7035):498-502.

[5] Kenyon C. The first long-lived mutants: discovery of the insulin/IGF-1 pathway for ageing. Phil Trans R Soc B, 2011, 366(1561):9-16.

[6] Evans E A, Chen W C, Tan M W. The DAF-2 insulin-like signaling pathway independently regulates aging and immunity in Caenorhabditis elegans. Aging Cell, 2008, 7(6):879-893.

[7] Williams T W, Dumas K J, Hu P J. EAK proteins: novel conserved regulation of Caenorhabditis elegans lifespan. Aging, 2010, 1(10):742-747.

[8] Jensen V L, Simonsen K T, Lee Y H, et al. RNAi screen of DAF-16/FOXO target genes in Caenorhabditis elegans links pathogenesis and dauer formation. PLOS ONE, 2010, 5(12):1-8.

[9] Murphy C T, McCarroll S A, Bargmann C I, et al. Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature, 2003, 424(6946):277-283.

[10] Shivers R P,Youngman M J, Kim D H. Transcriptional responses to pathogens in Caenorhabditis elegans. Curr Opin Microbiol, 2008, 11(3):251-256.

[11] Yoko H, Masashi T, Shuji H. Redox regulation,gene expression and longevity. Geriatr Gerontol Int, 2010, 10(1):59-69.

[12] Chavez V, Mohri-Shiomi A, Maadani A, et al. Oxidative stress enzymes are required for DAF-16 mediated immunity due to generation of reactive oxygen species by Caenorhabditis elegans. Genetics, 2007, 176(3):1567-1577.

[13] Zugasti O, Eubank J J. Neuroimmune regulation of antimicrobial peptide xpression by a noncanonical TGF-βsignaling pathway in Caenorhabditis elegans epidermis. Nat Immunol, 2009, 10(3):249-256.

[14] Mallo G V, Kurz C L, Couillault C. Inducible antibacterial defense system in C. elegans. Curr Biol, 2002, 12(14):1209-1214.

[15] Roberts A F, Gumienny T L, Gleason R J. Regulation of genes affecting body size and innate immunity by the DBL-1/BMP-like pathway in Caenorhabditis elegans. BMC Dev Biol, 2010, 10(61):1-10.

[16] Kurz C L, Tan M W. Regulation of aging and innate immunity in Caenorhabditis elegans. Aging Cell, 2004, 3(4):185-193.

[17] Bolz D D,Tenor J L, Aballay A. A conserved PMK-1/P38 MAPK is required in Ceanorhabditis elegans tissue-specific immune response. J Biol Chem, 2010, 285(14):10832-10840.

[18] Mizuno T, Hisamoto N, Terada T, et al. The Caenorhabditis elegans MAPK phosphatase VHP-1 mediates a novel JNK-like signaling pathway in stress response. EMBO, 2004, 23(11):2226-2234.

[19] Nicholas H R, Hodgkin J. The ERK MAPK kinase cascade mediates tail swelling and a protective response to rectal infection in Caenorhabditis elegans. Curr Biol, 2004, 14(14):1256-1261.

[20] Kim D H, Liberati N T, Mizuno T, et al. Integration of Caenorhabditis elegans MAPK pathways mediating immunity and stress resistance by MEK-1 MAPK kinase and VHP-1 MAPK phosphatase. Proc Natl Acad Sci USA, 2004, 101(30):10990-10994.

[21] Gravato-Nobre M J, Hodgkin J. Caenorhabditis elegans as a model for innate immunity to pathogens. Cell Microbiol, 2005, 7(6):741-751.

[22] Putcha G V,Johnson E M. 'Men are but worms:’ neuronal cell death in C. elegnas and vertebrates. Cell Death Differ, 2004, 11(1):38-48.

[23] 王凯.生命科学研究中常用模式生物.生命科学研究, 2010,14(2):156-165. Wang K. Life Science Research, 2010, 14(2):156-165.

[24] Nehme R, Conradt B. Egl-1: a key activator of apoptotic cell death in C. elegans. Oncogene, 2008, 27(1):30-40.

[25] Aballay A, Ausubel F M. Programmed cell death mediated by ced-3 and ced-4 protects Caenorhabditis elegans from Salmonella typhimurium-mediated killing. Proc Natl Acad Sci USA, 2001, 98(5):2735-2739.

[26] Tenor J L, Aballay A. A conserved Toll-like receptor is required for Caenorhabditis elegans innate immunity. Scientific Report, 2008, 9(1):103-109.

[27] Liberati N T, Fitzgeraldet K A, Kim D H, et al. Requirement for a conserved Toll/interleukin-1 resistance domain protein in the C.elegans immune response. Proc Natl Acad Sci USA, 2004, 101(17):6593-6598.

[28] Couillault C, Pujol N, Reboul J, et al. TLR-independent control of innate immunity in Caenorhabditis elegans by the TIR domain adaptor protein TIR-1,an ortholog of human SARM. Nat Immunol, 2004, 5(5):488-494.

[29] 杨再昌,杨小生. 秀丽隐杆线虫(Caenorhabditis elegans)在药物筛选中的应用.生命科学, 2009, 21(4):593-598. Yang Z C, Yang X S. Chinese Bulletion of Life Sciences, 2009, 21(4):593-598.

[1] 董曙馨,秦磊,李春,李珺. 利用转录因子工程重塑代谢网络实现细胞工厂高效生产[J]. 中国生物工程杂志, 2021, 41(4): 55-63.
[2] 郝晓婷,刘俊杰,邓玉林,张永谦. 基于SOS反应及氧化应激反应相关启动子的辐射生物传感器研究 *[J]. 中国生物工程杂志, 2020, 40(7): 30-40.
[3] 王丹丹, 陈恬, 许亮国. Yeast two-hybrid方法筛选VISA相互作用蛋白[J]. 中国生物工程杂志, 2017, 37(6): 63-69.
[4] 陈娜子, 姜潮, 李校堃. 内质网应激与疾病[J]. 中国生物工程杂志, 2016, 36(1): 76-85.
[5] 胡燕珍, 卫军营, 罗光明. 谷胱甘肽在肝脏疾病相关信号通路中的作用及研究进展[J]. 中国生物工程杂志, 2015, 35(10): 72-77.
[6] 高星杰, 张毅, 苏超, 付雪, 史雪彬, 尹洁, 何津岩, 王鑫廷, 姚智, 杨洁. 针对人Tudor-SN蛋白T103位点的应激磷酸化抗体制备及分析[J]. 中国生物工程杂志, 2014, 34(06): 55-60.
[7] 麻攀, 刘洪涛, 许青松, 白雪芳, 杜昱光. 壳寡糖缓解甲萘醌诱导巨噬细胞损伤机制初探[J]. 中国生物工程杂志, 2011, 31(06): 18-21.
[8] 芦秀丽1刘剑利1,曹向宇,侯芳芳,高兵. 24-脱氢胆固醇还原酶抗氧化应激作用的功能结构域的鉴定[J]. 中国生物工程杂志, 2009, 29(05): 50-54.
[9] 史春林,王云峰,石星明,王玫,孙妍,童光志. 抗菌肽在宿主防御中作用[J]. 中国生物工程杂志, 2008, 28(4): 82-86.
[10] 刘东军,张锐,郭三堆,孟志刚,孙国清,王成社. 棉花品系Y18对草甘瞵应激反应机理的研究[J]. 中国生物工程杂志, 2008, 28(10): 55-59.
[11] 珠帕尔·木拉提, 杨慧, 蔡青, 赵春礼, 梁源, 赵焕英, 胡宇. 农药鱼藤酮对表达α-突触核蛋白细胞的作用[J]. 中国生物工程杂志, 2004, 24(10): 74-79.