Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2011, Vol. 31 Issue (12): 120-125    
综述     
仅基于RNA元件构建可诱导哺乳动物细胞基因表达的调控系统
刁勇1,2
1. 华侨大学分子药物学研究所 泉州 362021;
2. 分子药物教育部工程研究中心 泉州 362021
Inducible Gene Expression of Mammalian via RNA-only Strategies
DIAO Yong1,2
1. Institute of Molecular Medicine, Huaqiao University, Quanzhou 362021, China;
2. Engineering Research Center of Molecular Medicine, Ministry of Education, Quanzhou 362021, China
 全文: PDF(938 KB)   HTML
摘要:

大量的临床前和临床研究结果已表明基因治疗是理想的疾病治疗手段,然而如何实现治疗基因表达的精确调控仍然是研究人员面临的主要挑战。目前临床前研究常用的基因调控系统多基于控制转录,对反式转录激活因子和专门启动子元件的依赖限制了该系统的临床应用。最近,仅采用RNA元件构建的几种基因表达调控系统得到开发,其作用机制为核酶介导的RNA自我切割、RNA干扰、mRNA翻译启动或终止控制等。该类系统的调控活性由小分子配体反式控制,诱导基因表达的变化幅度可观,反应快速,在哺乳动物体内外均可实现。该系统结构模块化,调控活性可调节,可以克服现有转录调节系统的一些应用局限,对将来基因治疗的临床应用具有重要意义。

关键词: 基因表达基因治疗哺乳动物细胞转录后控制    
Abstract:

Numerous preclinical and clinical studies have demonstrated the promising efficacy of gene therapy. However, precise regulation of therapeutic gene expression in vivo is still a challenge. Most of the gene regulation systems commonly used now are based on the control of transcription, but their clinical applications are limited because of their reliance on chimeric transcriptional transactivators and specialized promoter elements. More recently, several RNA-only strategies that control gene expression in mammalian cells and mice through RNA self-cleavage, RNA interference, modulation of mRNA translation initiation or termination, etc, and whose activity can be regulated by a small molecular ligand, have been developed. The extent of gene expression induction is substantial, the induction is rapid, and the expression regulation can be achieved both in vitro and in vivo. Those modular, tunable systems may overcome some of the limitations of transcription-based gene regulation systems. So they should have important clinical application in the setting of gene therapy protocols.

Key words: Gene expression    Gene therapy    Mammalian cell    Post-transcription regulation
收稿日期: 2011-07-26 出版日期: 2011-12-25
ZTFLH:  Q789  
基金资助:

国家自然科学基金(30973591)、福建省科技重点项目(2009I0017)、江苏省科技重点项目(BC2009029)资助项目

通讯作者: 刁勇:diaoyong@hqu.edu.cn     E-mail: diaoyong@hqu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

刁勇. 仅基于RNA元件构建可诱导哺乳动物细胞基因表达的调控系统[J]. 中国生物工程杂志, 2011, 31(12): 120-125.

DIAO Yong. Inducible Gene Expression of Mammalian via RNA-only Strategies. China Biotechnology, 2011, 31(12): 120-125.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2011/V31/I12/120


[1] Guo Z S, Li Q, Bartlett D L, et al. Gene transfer: the challenge of regulated gene expression. Trends Mol Med. 2008,14(9):410-418.

[2] Stieger K, Belbellaa B, Le Guiner C, et al. In vivo gene regulation using tetracycline-regulatable systems. Adv Drug Deliv Rev. 2009, 61(7-8):527-541.

[3] Win M N, Liang J C, Smolke C D. Frameworks for programming biological function through RNA parts and devices. Chem Biol, 2009, 16:298-310.

[4] Buskirk A R, Landrigan A, Liu D R. Engineering a ligand-dependent RNA transcriptional activator. Chem Biol, 2004, 11:1157-1163.

[5] Chen Y Y, Jensen M C, Smolke C D. Genetic control of mammalian T-cell proliferation with synthetic RNA regulatory systems. Proc Natl Acad Sci USA, 2010,107:8531-8536.

[6] Win M N, Smolke C D. A modular and extensible RNA-based gene-regulatory platform for engineering cellular function. Proc Natl Acad Sci USA, 2007,104:14283-14288.

[7] Weigand J E, Suess B. Tetracycline aptamer-controlled regulation of pre-mRNA splicing in yeast. Nucleic Acids Res, 2007, 35:4179-4185.

[8] Kim D S, Gusti V, Dery K J, et al. Ligand-induced sequestering of branchpoint sequence allows conditional control of splicing. BMC Mol Biol, 2008, 9:23.

[9] Bayer T S, Smolke C D. Programmable ligand-controlled riboregulators of eukaryotic gene expression. Nat Biotechnol, 2005,23:337-343.

[10] Desai S K, Gallivan J P. Genetic screens and selections for small molecules based on a synthetic riboswitch that activates protein translation. J Am Chem Soc, 2004, 126:13247-13254.

[11] Suess B, Fink B, Berens C,et al. A theophylline responsive riboswitch based on helix slipping controls gene expression in vivo. Nucleic Acids Res, 2004,32:1610-1614.

[12] Sharma V, Nomura Y, Yokobayashi Y. Engineering complex riboswitch regulation by dual genetic selection. J Am Chem Soc, 2008,130:16310-16315.

[13] An C I, Trinh V B, Yokobayashi Y. Artificial control of gene expression in mammalian cells by modulating RNA interference through aptamer-small molecule interaction. RNA, 2006, 12:710-716.

[14] Beisel C L, Bayer T S, Hoff K G,et al. Model-guided design of ligand-regulated RNAi for programmable control of gene expression. Mol Syst Biol, 2008, 4:224.

[15] Beisel C L, Chen Y Y, Culler S J,et al. Design of small molecule-responsive microRNAs based on structural requirements for Drosha processing. Nucleic Acids Res, 2011,39(7):2981-2994.

[16] Yen L, Svendsen J, Lee J S, et al. Exogenous control of mammalian gene expression through modulation of RNA self-cleavage. Nature, 2004,431(7007):471-476.

[17] Yen L, Magnier M, Weissleder R, et al. Identification of inhibitors of ribozyme self-cleavage in mammalian cells via high-throughput screening of chemical libraries. RNA, 2006, 12: 797-806.

[18] Zamore P D, Haley B. Ribo-gnome: The big world of small RNAs. Science, 2005,309: 1519-1524.

[19] Lee S K, Kumar P. Conditional RNAi: towards a silent gene therapy. Adv Drug Deliv Rev, 2009, 61(7-8):650-664.

[20] Sandy P, Ventura A, Jacks T. Mammalian RNAi: A practical guide. Biotechniques, 2005, 39: 215-224.

[21] Tuleuova N, An C I, Ramanculov E, et al. Modulating endogenous gene expression of mammalian cells via RNA-small molecule interaction. Biochem Biophys Res Commun, 2008,376(1):169-173.

[22] Parrott C L, Alsayed N, Rebourcet R, et al. ApoC-IIParis2: a premature termination mutation in the signal peptide of apoC-II resulting in the familial chylomicronemia syndrome. J Lipid Res, 1992,33:361-367.

[23] Dranchak P K, Di Pietro E, Snowden A, et al. Nonsense suppressor therapies rescue peroxisome lipid metabolism and assembly in cells from patients with specific PEX gene mutations. J Cell Biochem, 2011,112(5):1250-1258.

[24] Floquet C, Deforges J, Rousset J P, et al. Rescue of non-sense mutated p53 tumor suppressor gene by aminoglycosides. Nucleic Acids Res, 2011, 39(8):3350-3362.

[25] Murphy G J, Mostoslavsky G, Kotton D N, et al. Exogenous control of mammalian gene expression via modulation of translational termination. Nat Med, 2006, 12(9):1093-9109.

[26] Rothman J E. Mechanisms of intracellular protein transport. Nature, 1994,372:55-63.

[27] Dambach M D, Winkler W C. Expanding roles for metabolite-sensing regulatory RNAs. Curr Opin Microbiol, 2009, 12(2):161-169.

[28] Werstuck G, Green M R. Controlling gene expression in living cells through small molecule-RNA interactions. Science, 1998, 282:296-298.

[29] Han J, Xiong J, Wang D, et al. Pre-mRNA splicing: where and when in the nucleus. Trends Cell Biol, 2011, 21(6):336-343.

[30] Emanuele B, Francisco E B. Influence of RNA secondary structure on the pre-mRNA splicing process. Molecular and Cellular Biology, 2004, 24(24): 10505-10514.

[31] Kim D S, Gusti V, Dery K J, et al. Ligand-induced sequestering of branchpoint sequence allows conditional control of splicing. BMC Mol Biol, 2008, 9: 23.

[32] Hacein-Bey-Abina S, Von Kalle C, Schmidt M, et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science,2003,302:415-419.

[33] Stoltenburg R, Reinemann C, Strehlitz B. SELEX-a (r)evolutionary method to generate high-affinity nucleic acid ligands. Biomol Eng, 2007, 24:381-403.

[34] Sinha J, Reyes S J, Gallivan J P. Reprogramming bacteria to seek and destroy an herbicide. Nat Chem Biol, 2010, 6: 464-470.

[35] Lin J S, McNatty P K. Aptamer-based regionally-protected PCR for protein detection. Clin Chem, 2009, 55(9):1686-1693.

[36] Weigand J E, Schmidtke S R, Will T J, et al. Mechanistic insights into an engineered riboswitch: a switching element which confers riboswitch activity. Nucleic Acids Res, 2011, 39(8):3363-3372.

[37] Weigand J E, Sanchez M, Gunnesch E B, et al. Screening for engineered neomycin riboswitches that control translation initiation. RNA, 2008, 14: 89-97.

[1] 赵晓煜,徐祺玲,赵晓东,安云飞. 基因治疗慢病毒载体的转导增强策略*[J]. 中国生物工程杂志, 2021, 41(8): 52-58.
[2] 王惠临,周凯强,朱红雨,王力景,杨仲璠,徐明波,曹荣月. 凝血因子VII及其重组表达新进展[J]. 中国生物工程杂志, 2021, 41(2/3): 129-137.
[3] 徐应永. 基因治疗产品的开发现状与挑战[J]. 中国生物工程杂志, 2020, 40(12): 95-103.
[4] 陈庆宇,王鲜忠,张姣姣. 基因技术在治疗2型糖尿病中的应用*[J]. 中国生物工程杂志, 2020, 40(11): 73-81.
[5] 苏爽,金永杰,黄瑞晶,李剑,徐寒梅. 哺乳动物细胞灌流培养工艺研究进展[J]. 中国生物工程杂志, 2019, 39(3): 105-110.
[6] 郭玉蕾,唐亮,孙瑞强,李尤,陈依军. 高通量微型生物反应器的研究进展[J]. 中国生物工程杂志, 2018, 38(8): 69-75.
[7] 韩亚丽,杨冠恒,陈雁雯,龚秀丽,张敬之. 表达β-珠蛋白基因的安全性慢病毒载体的优化 *[J]. 中国生物工程杂志, 2018, 38(7): 50-57.
[8] 唐健雪,肖永乐,彭俊杰,赵世纪,万小平,高荣. 融合抗菌肽基因在重组毕赤酵母的表达及体外活性研究 *[J]. 中国生物工程杂志, 2018, 38(6): 9-16.
[9] 庄旻敏,贾晓会,施定基,朱嘉诚,冯思豫,何培民,贾睿. 转基因聚球藻7942中vp28基因表达效率及其光合特性分析[J]. 中国生物工程杂志, 2018, 38(4): 30-37.
[10] 姚立鹏,葛炜,胡英君,骆海燕,吴珊珊,林飞蕾,郭俊明. 环状RNA的结构和功能特性及其与胃癌发生的关系 *[J]. 中国生物工程杂志, 2018, 38(2): 82-88.
[11] 张艳芳, 孙瑞芬, 郭树春, 侯建华. 向日葵V-ATPase a3亚基基因的克隆及表达分析[J]. 中国生物工程杂志, 2017, 37(5): 19-27.
[12] 项丽, 王申, 田海山, 钟美娟, 周汝滨, 曹定国, 梁朋, 张国平, 何滔, 庞实锋. 小鼠c-Myc基因的克隆表达及其纯化[J]. 中国生物工程杂志, 2017, 37(2): 20-25.
[13] 王曦光, 王娟, 张琳. 拟南芥蛋白质丰度与基因翻译效率关联分析[J]. 中国生物工程杂志, 2017, 37(2): 40-47.
[14] 栗晓飞, 曹英秀, 宋浩. CRISPR/Cas9系统研究进展[J]. 中国生物工程杂志, 2017, 37(10): 86-92.
[15] 史利平, 季静, 王罡, 金超, 谢超, 杜希龙, 关春峰, 张烈, 李辰. 盐胁迫条件下玉米萜类合成相关基因的表达分析[J]. 中国生物工程杂志, 2016, 36(8): 31-37.