Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2011, Vol. 31 Issue (12): 109-114    
综述     
microRNA分子表达与调控研究的最新进展
董园园1,2, 李海燕2, 李校堃1,2, 杨树林1
1. 南京理工大学环境与生物工程学院 南京 210094;
2. 吉林农业大学生物反应器与药物开发教育部工程研究中心 长春 130118
Molecular Expression and Regulation of MicroRNA
DONG Yuan-yuan1,2, LI Hai-yan2, LI Xiao-kun1,2, YANG Shu-lin1
1. School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China;
2. Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
 全文: PDF(643 KB)   HTML
摘要:

microRNA(miRNA)是一类分子长度为19~24nt的微小RNA,通常在转录后水平调控靶基因的降解或抑制翻译。miRNA分子在进化上高度保守,已经发现越来越多的miRNA分子参与真核生物的生长发育、生理活性、细胞增殖、组织分化、细胞凋亡、复杂疾病调控等功能。通过介绍miRNA的起源、合成、修饰、细胞表达特点,以及对真核细胞调控等的最新进展与研究方法,阐述miRNA在基因表达调节中的重要地位及应用前景。

关键词: miRNA表达转录后调控基因调控    
Abstract:

MicroRNA(miRNA) is a class of small RNAs with the length of 19~24nt, which usually regulated the degradation or inhibiting translation of target genes at the post-transcriptional level. MiRNA molecules are highly conserved in evolution, a growing number of miRNA molecules that involved in eukaryotic growth and development, physical activity, cell proliferation, differentiation, apoptosis, complex disease control and other functions have been found. The important prospects of miRNAs in the regulation of gene expression through introducing origins, synthesis, modification, characteristics of cells, and eukaryotic cells regulation of miRNAs with the latest developments and research methods are provided.

Key words: miRNA expression    Post-transcriptional regulation    Gene regulation
收稿日期: 2011-08-01 出版日期: 2011-12-25
ZTFLH:  Q789  
基金资助:

国家"863"计划资助项目(SQ2010AA1000691008)

通讯作者: 李校堃,杨树林,电子信箱:xiaokunli56@yahoo.cn;bioshuliny@yahoo.com.cn     E-mail: xiaokunli56@yahoo.cn;bioshuliny@yahoo.com.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

董园园, 李海燕, 李校堃, 杨树林. microRNA分子表达与调控研究的最新进展[J]. 中国生物工程杂志, 2011, 31(12): 109-114.

DONG Yuan-yuan, LI Hai-yan, LI Xiao-kun, YANG Shu-lin. Molecular Expression and Regulation of MicroRNA. China Biotechnology, 2011, 31(12): 109-114.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2011/V31/I12/109


[1] Vaucheret H. Post-transcriptional small RNA pathways in plants: mechanisms and regulations. Genes Dev, 2006, 20(7): 759-771.

[2] Matzke M A, Matzke A J. Planting the seeds of a new paradigm. PLoS Biol, 2004 2(5): E133.

[3] Jaubert M, Bhattacharjee S, Mello A F, et al. ARGONAUTE2 mediates RNA-silencing antiviral defenses against Potato virus X in Arabidopsis. Plant Physiol, 2011, 156(3): 1556-1564.

[4] Kim V N, Nam J W. Genomics of microRNA. Trends Genet, 2006, 22(3): 165-173.

[5] Li Y, Li C, Xia J, et al. Domestication of transposable elements into MicroRNA genes in plants. PLoS One, 2011, 6(5): e19212.

[6] Piriyapongsa J, Jordan I K. Dual coding of siRNAs and miRNAs by plant transposable elements. RNA, 2008, 14(5): 814-821.

[7] Allen E, Xie Z, Gustafson A M, et al. Evolution of microRNA genes by inverted duplication of target gene sequences in Arabidopsis thaliana. Nat Genet, 2004, 36(12): 1282-1290.

[8] Chapman E J, Carrington J C. Specialization and evolution of endogenous small RNA pathways. Nat Rev Genet, 2007, 8(11): 884-896.

[9] Voinnet O. Origin, biogenesis, and activity of plant microRNAs. Cell, 2009, 136(4): 669-687.

[10] Shabalina S A, Koonin E V. Origins and evolution of eukaryotic RNA interference. Trends Ecol Evol, 2008, 23(10): 578-587.

[11] Vazquez F, Arabidopsis endogenous small RNAs: highways and byways. Trends Plant Sci 2006, 11(9): 460-468.

[12] Kim Y K, Heo I, Kim V N. Modifications of small RNAs and their associated proteins. Cell, 2010, 143(5): 703-709.

[13] Ibrahim F, Rymarquis L A, Kim E J, et al. Uridylation of mature miRNAs and siRNAs by the MUT68 nucleotidyltransferase promotes their degradation in Chlamydomonas. Proc Natl Acad Sci U S A, 2010, 107(8): 3906-3911.

[14] Katoh T, Sakaguchi Y, Miyauchi K, et al. Selective stabilization of mammalian microRNAs by 3' adenylation mediated by the cytoplasmic poly(A) polymerase GLD-2. Genes Dev, 2009, 23(4): 433-438.

[15] Li J, Yang Z, Yu B, et al. Methylation protects miRNAs and siRNAs from a 3'-end uridylation activity in Arabidopsis. Curr Biol, 2005, 15(16): 1501-1507.

[16] Chitwood D H, Timmermans M C. Small RNAs are on the move. Nature, 2010, 467(7314): 415-419.

[17] Dunoyer P, Schott G, Himber C, et al. Small RNA duplexes function as mobile silencing signals between plant cells. Science, 2010, 328(5980): 912-916.

[18] Chitwood D H, Nogueira F T, Howell M D, et al. Pattern formation via small RNA mobility. Genes Dev, 2009, 23(5): 549-554.

[19] Carlsbecker A, Lee J Y, Roberts C J, et al. Cell signalling by microRNA165/6 directs gene dose-dependent root cell fate. Nature, 2010, 465(7296): 316-321.

[20] Ng D W, Zhang C, Miller M, et al. cis-and trans-regulation of miR163 and target genes confers natural variation of secondary metabolites in two Arabidopsis species and their allopolyploids. Plant Cell, 2011, 23(5): 1729-1740.

[21] Chavali P L, Funa K, Chavali S. Cis-regulation of microRNA expression by scaffold/matrix-attachment regions. Nucleic Acids Res, 2011, 39(16): 6908-6918.

[22] Oh T J, Wartell R M, Cairney J, et al. Evidence for stage-specific modulation of specific microRNAs (miRNAs) and miRNA processing components in zygotic embryo and female gametophyte of loblolly pine (Pinus taeda). New Phytol, 2008, 179(1): 67-80.

[23] Yang X, Zhang H, Li L. Global analysis of gene-level microRNA expression in Arabidopsis using deep sequencing data. Genomics, 2011, 98(1): 40-46.

[24] Luo Q J, Samanta M P, Koksal F, et al. Evidence for antisense transcription associated with microRNA target mRNAs in Arabidopsis. PLoS Genet, 2009, 5(4): e1000457.

[25] Khan A A, Betel D, Miller M L, et al. Transfection of small RNAs globally perturbs gene regulation by endogenous microRNAs. Nat Biotechnol, 2009, 27(6): 549-555.

[26] Poethig RS. Small RNAs and developmental timing in plants. Curr Opin Genet Dev,2009, 19(4): 374-378.

[27] Alonso-Peral M M, Li J, Li Y, et al. The microRNA159-regulated GAMYB-like genes inhibit growth and promote programmed cell death in Arabidopsis. Plant Physiol, 2010, 154(2): 757-771.

[28] Wan P, Wu J, Zhou Y, et al. Computational analysis of drought stress-associated miRNAs and miRNA co-regulation network in Physcomitrella patens. Genomics Proteomics Bioinformatics, 2011, 9(1-2): 37-44.

[29] Jian X, Zhang L, Li G, et al. Identification of novel stress-regulated microRNAs from Oryza sativa L. Genomics, 2010, 95(1): 47-55.

[30] Wang C Y, Chen Y Q, Liu Q. Sculpting the meristem: The roles of miRNAs in plant stem cells. Biochem Biophys Res Commun, 2011, 409(3): 363-366.

[31] Wang J W, Schwab R, Czech B, et al. Dual effects of miR156-targeted SPL genes and CYP78A5/KLUH on plastochron length and organ size in Arabidopsis thaliana. Plant Cell, 2008, 20(5): 1231-1243.

[32] Ascencio-Ibanez J T, Sozzani R, Lee T J, et al. Global analysis of Arabidopsis gene expression uncovers a complex array of changes impacting pathogen response and cell cycle during geminivirus infection. Plant Physiol, 2008, 148(1): 436-454.

[33] Zhao M, Ding H, Zhu J K, et al. Involvement of miR169 in the nitrogen-starvation responses in Arabidopsis. New Phytol, 2011, 190(4): 906-915.

[34] Zhang X, Zou Z, Gong P, et al. Over-expression of microRNA169 confers enhanced drought tolerance to tomato. Biotechnol Lett, 2011, 33(2): 403-409.

[35] Grigorova B, Mara C, Hollender C, et al. LEUNIG and SEUSS co-repressors regulate miR172 expression in Arabidopsis flowers. Development, 2011, 138(12): 2451-2456.

[36] Jung J H, Seo P J, Kang S K, et al. miR172 signals are incorporated into the miR156 signaling pathway at the SPL3/4/5 genes in Arabidopsis developmental transitions. Plant Mol Biol, 2011, 76(1-2): 35-45.

[37] Liu D, Song Y, Chen Z, et al. Ectopic expression of miR396 suppresses GRF target gene expression and alters leaf growth in Arabidopsis. Physiol Plant, 2009, 136(2): 223-236.

[38] Kantar M, Lucas S J, Budak H. miRNA expression patterns of Triticum dicoccoides in response to shock drought stress. Planta, 2011, 233(3): 471-484.

[39] Kim W, Ahn H J, Chiou T J, et al. The role of the miR399-PHO2 module in the regulation of flowering time in response to different ambient temperatures in Arabidopsis thaliana. Mol Cells, 2011, 32(1): 83-88.

[40] Liffers S T, Munding J B, Vogt M, et al. MicroRNA-148a is down-regulated in human pancreatic ductal adenocarcinomas and regulates cell survival by targeting CDC25B. Lab Invest, 2011, (in press).

[41] Acunzo M, Visone R, Romano G, et al. miR-130a targets MET and induces TRAIL-sensitivity in NSCLC by downregulating miR-221 and 222. Oncogene, 2011, (in press).

[42] Franco-Zorrilla J M, Valli A, Todesco M, et al. Target mimicry provides a new mechanism for regulation of microRNA activity. Nat Genet, 2007, 39(8): 1033-1037.

[43] Loya C M, Lu C S, Van Vactor D, et al. Transgenic microRNA inhibition with spatiotemporal specificity in intact organisms. Nat Methods, 2009, 6(12): 897-903.

[1] 田开仁,薛二淑,宋倩倩,乔建军,李艳妮. CRISPR-dCas9调控基因转录的研究进展 *[J]. 中国生物工程杂志, 2018, 38(7): 94-101.
[2] 邱浩,汪铭书,程安春. γPNA一种新型高效的肽核酸[J]. 中国生物工程杂志, 2018, 38(2): 75-81.
[3] 王佳稳, 冯婧娴, 林俊生, 刁勇. 技术与方法适体核酶型人工核糖开关的设计[J]. 中国生物工程杂志, 2014, 34(2): 59-64.
[4] 朱先灿 宋凤斌. 植物菌根共生磷酸盐转运蛋白[J]. 中国生物工程杂志, 2009, 29(12): 108-113.
[5] 陈坚,薛绪潮,方国恩,苏长青,钱其军. RU486诱导调控载体的构建及体外表达[J]. 中国生物工程杂志, 2007, 27(6): 1-5.
[6] 贾彩凤, 李悦, 瞿超. 木本植物体细胞胚胎发生技术[J]. 中国生物工程杂志, 2004, 24(3): 26-29.
[7] 高波, 宋红芹, 陈芹, 李碧春, 孙怀昌, 王克华, 窦套存, 丁铲. 鸡输卵管特异表达载体的构建及其体内表达[J]. 中国生物工程杂志, 2003, 23(8): 83-86.
[8] 綦文涛, 修志龙. 甘油歧化生产1,3-丙二醇过程的代谢和基因调控机理研究进展[J]. 中国生物工程杂志, 2003, 23(2): 64-68.
[9] 陈云弟, 曾溢滔. X染色体失活——一种特殊方式的基因调控[J]. 中国生物工程杂志, 1997, 17(3): 38-42.
[10] 艾万东. 高等植物调渗蛋白与耐旱耐盐基因工程[J]. 中国生物工程杂志, 1994, 14(3): 10-15.
[11] 闻伟, 杨胜利. 反义RNA在基因调控中的作用[J]. 中国生物工程杂志, 1990, 10(3): 38-45.
[12] 王智, 李士谔. 癌基因与细胞癌变[J]. 中国生物工程杂志, 1989, 9(2): 20-31.
[13] 蔡良琬. 重复顺序与基因表达[J]. 中国生物工程杂志, 1983, 3(3): 22-30.
[14] E.H.Daridson, R.J.Britten, 何国顺. 重复顺序与真核生物的基因表达[J]. 中国生物工程杂志, 1982, 2(1): 30-34.
[15] 王身立. 转录调控水平上的基因多效性[J]. 中国生物工程杂志, 1981, 1(4): 4-8.