Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2011, Vol. 31 Issue (03): 66-70    
研究报告     
串联填充管式反应系统中高浓度乙醇连续发酵
申渝1,2, 白凤武2
1. 重庆工商大学废油资源化技术与装备教育部工程研究中心 重庆 400067;
2. 大连理工大学生命科学与技术学院 大连 116023
Very High Gravity Ethanol Continuous Fermentation in Reaction System Composed by Packing Tubular Reactors
SHEN Yu1,2, BAI Feng-wu2
1. Engineering Research Centre for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China;
2. College of Bioscience and Biotechnology, Dalian University of Technology, Dalian 116023, China
 全文: PDF(594 KB)   HTML
摘要:

在一套由搅拌罐和管式反应器串联而成的组合式反应系统中,利用酿酒酵母进行连续发酵生产高浓度乙醇。后续管式反应器内通过装填聚氨酯颗粒和木块对酵母细胞进行吸附固定化,在乙醇抑制造成细胞活性大幅降低的情况下,通过大幅提高细胞浓度保证发酵效率,在稀释速率0.02h-1和280g/L葡萄糖的条件下,系统的终点乙醇浓度为15.4 % (v/v)。研究表明在一定稀释速率之下,应该通过增加反应器的级数来降低稀释速率,以达到提高终点乙醇浓度,如简单地降低进料速率则可能增加整个系统所受的乙醇抑制,对提高终点乙醇浓度效果不显著。

关键词: 乙醇高浓度连续发酵组合式反应系统细胞固定化    
Abstract:

A fermentation system composed of a stirred tank followed by four-stage packed tubular bioreactors in series was set up to evaluate very high gravity ethanol continuous fermentation using Saccharomyces cerevisiae. Polyurethane and wood chips were used for cells immobilization in tubular reactors, and ethanol productivity in later reactors were maintained at high level by high bilomass content even the viability and ethanol productivity of cells were inhibited by high ethanol content. The system ran at 0.02h-1 and fermented very high gravity medium containing 280 g/L glucose to produced 15.4 % v/v ethanol. It was also proved that dilution rat should reduce by new reactors added to higher final ethanol content under the lower dilution rat level.

Key words: Ethanol    Very high gravity continuous fermentation    Composed reaction system    Cells immobilization
收稿日期: 2010-10-09 出版日期: 2011-04-01
ZTFLH:  Q815  
基金资助:

国家"863"计划(2007AA10Z358)、重庆市教委科研项目 (KJ100707)、废油资源化技术与装备教育部工程研究中心科研项目 ( FYKJ2009010)资助项目

通讯作者: 申渝     E-mail: 1981shenyu@sohu.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
申渝
白凤武

引用本文:

申渝, 白凤武. 串联填充管式反应系统中高浓度乙醇连续发酵[J]. 中国生物工程杂志, 2011, 31(03): 66-70.

SHEN Yu, BAI Feng-wu. Very High Gravity Ethanol Continuous Fermentation in Reaction System Composed by Packing Tubular Reactors. China Biotechnology, 2011, 31(03): 66-70.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2011/V31/I03/66

[1] Thomas K C, Hynes S H, Ingledew W M. Practical and theoretical considerations in the production of high concentrations of alcohol by fermentation. Process Biochem, 1996, 31(4): 321-331.
[2] Bayrock D P, Ingledew W M. Application of multistage continuous fermentation for production of fuel alcohol by very-high-gravity fermentation technology. J Ind Microbiol Biotechnol, 2001, 27(2): 87-93.
[3] Reddy L V A, Reddy O V S. Rapid and enhanced production of ethanol in very high gravity (VHG) sugar fermentation by Saccharomyces cerevisiae: role of finger millet (Eleusine coracana L.) flour. Process Biochem, 2006, 41(3): 726-729.
[4] Ding Z Y, Zhang L, Fang Y Y, et al. Application of full permeate recycling to very high gravity ethanol fermentation from corn. Korean J Chem Eng, 2009, 26(3): 719-723.
[5] Thomas K C, Ingledew W M. Fuel alcohol production: effects of free amino nitrogen of fermentation of very high gravity wheat mashes. Appl Environ Microbiol, 1990, 56(7): 2046-2050.
[6] Wang F Q, Gao C J, Yang C Y, et al. Optimization of an ethanol production medium in very high gravity fermentation. Biotechnol Lett , 2007, 29(2): 233-236.
[7] D’Amore T, Panchal C J, Russell I, et al. A study of ethanol tolerance in yeast. Crit Rev Biotechnol, 1989, 9(4): 287-304.
[8] Seki T, Myoga S, Limtong S, et al. Genetic construction of yeast strains for high ethanol production. Biotechnol Lett, 1983, 5(5): 351-356.
[9] Kavanagh K, Whittaker P A. Application of protoplast fusion to the nonconventional yeast. Enzyme Microb Technol, 1996, 18(1): 45-51.
[10] Alper H, Moxley J, Nevoigt E, et al. Engineering yeast transcription machinery for improved ethanol tolerance and production. Sci, 2006, 314(5805): 1565-1568.
[11] 杨蕾,陈丽杰,白凤武.高浓度酒精连续发酵过程中振荡行为的模拟及填料弱化振荡的机理.化工学报,2007,58(3):715-721. Yang L, Chen L J, Bai F W. J CIESC, 2007, 58(3): 715-721.
[12] 赵斌,何绍江.微生物学实验.北京:科学出版社,2002. 69-72. Zhao B, He S J. Technology of Microbiology. Beijing:Science Press, 2002.69-72.
[13] Brányik T, Vicente A A, Kuncová G, et al. Growth model and metabolic activity of brewing yeast biofilm on the surface of spent grains: a biocatalyst for continuous beer fermentation. Biotechnol prog, 2004, 20(6): 1733-1740.
[14] 陈令伟,葛旭萌,赵心清,等.木块填料对高浓度乙醇连续发酵过程中振荡行为的弱化机制.化工学报,2007,58 (10):2624-2628. Chen L W, Ge X M, Zhao X Q. J CIESC, 2007, 58(10): 2624-2628.
[15] Shen H Y, Moonjai N, Verstrepen K J, et al. Impact of attachment immobilization on yeast physiology and fermentation performance. J Am Soc Brew Chem, 2003, 61(2): 79-87.
[16] Guénette M, Duvnjak Z. Wood blocks as a carrier for Saccharomyces cerevisiae used in the production of ethanol and fructose. Chem Eng J Biochem Eng J, 1996, 61(3): 233-240.
[17] Thomas K C, Hynes S H, Ingledew W M. Effects of particulate materials and osmoprotectants on very-high-gravity ethanolic fermentation by Saccharomyces cerevisiae. Appl Environ Microbiol, 1994, 60(5): 1519-1524.
[18] Verstrepen K J, Klis F M. Flocculation, adhesion and biofilm formation in yeasts. Mol Microbiol, 2006, 60(1):5-15.

[1] 翟君叶,成旭,孙泽敏,李春,吕波. 毛蕊花糖苷的生物合成研究进展[J]. 中国生物工程杂志, 2021, 41(5): 94-104.
[2] 董璐,张继福,张云,胡云峰. 环氧树脂固定化的Bacillus sp. DL-2胞外蛋白酶在拆分(±)-乙酸苏合香酯中的应用 *[J]. 中国生物工程杂志, 2020, 40(4): 49-58.
[3] 张颖,王莹,杨立荣,吴坚平. DA-F127水凝胶包埋固定化含腈水合酶细胞[J]. 中国生物工程杂志, 2019, 39(11): 70-77.
[4] 郗欣彤,毛绍名. 褐藻制备生物乙醇的生产优化研究 *[J]. 中国生物工程杂志, 2017, 37(12): 111-118.
[5] 王景胜, 王秋峰, 李勇, 刘燕, 张先楚, 李波, 董青山, 刘钺. Logistic模型在不同还原糖初始浓度乙醇发酵中的应用[J]. 中国生物工程杂志, 2017, 37(10): 81-85.
[6] 郭雪娇, 查健, 姚坤, 王昕, 李炳志, 元英进. 选育耐受复合抑制剂酿酒酵母提高乙醇产量[J]. 中国生物工程杂志, 2016, 36(5): 97-105.
[7] 梁向南, 张鲲, 邹少兰, 王建军, 马媛媛, 洪解放. 鸡尾酒δ整合策略构建表达三类纤维素酶的酿酒酵母工程菌株及初步评价[J]. 中国生物工程杂志, 2016, 36(11): 54-62.
[8] 张许, 丁健, 高鹏, 高敏杰, 贾禄强, 涂庭勇, 史仲平. 基于差分进化算法的酿酒酵母分批补料培养在线自适应控制[J]. 中国生物工程杂志, 2016, 36(1): 68-75.
[9] 申冬玲, 尚淑梅, 李卫娜, 严金平, 伊日布斯. ack基因敲除对Thermoanaerobacterium calidifontis Rx1发酵代谢的影响[J]. 中国生物工程杂志, 2015, 35(7): 37-44.
[10] 孙欢, 贾海洋, 冯旭东, 刘月芹, 李春. 酿酒酵母耐热元器件的筛选[J]. 中国生物工程杂志, 2015, 35(3): 75-83.
[11] 李谢昆, 周卫征, 郭颖, 吴浩, 许敬亮, 袁振宏. 微藻生物质制备燃料乙醇关键技术研究进展[J]. 中国生物工程杂志, 2014, 34(5): 92-99.
[12] 高教琪, 韩锡铜, 孔亮, 袁文杰, 王娜, 白凤武. 马克斯克鲁维酵母在工业生物技术中的应用[J]. 中国生物工程杂志, 2014, 34(2): 109-117.
[13] 李云成, 汤岳琴, 木田建次. “组学”技术在燃料乙醇生产用酿酒酵母菌株构建中的应用[J]. 中国生物工程杂志, 2014, 34(2): 118-128.
[14] 杨华军, 邹少兰, 刘成, 马媛媛, 马向霞, 洪解放. 纤维素酶在酿酒酵母中的表达研究[J]. 中国生物工程杂志, 2014, 34(06): 75-83.
[15] 方华, 李灏. 海藻糖与热激蛋白在酿酒酵母耐受乙醇胁迫中的作用[J]. 中国生物工程杂志, 2014, 34(06): 84-89.