Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2011, Vol. 31 Issue (03): 61-65    
研究报告     
氧化铝气体分布器应用小球藻培养的研究
张齐1, 高振2, 黄和1,2, 梁西海1, 纪晓俊1, 郑洪立1, 尹丰伟1
1. 南京工业大学生物与制药工程学院 南京 210009;
2. 材料化学工程国家重点实验室 南京 210009
The Effect of Aeration on the Growth and Lipid Content on Chlorella vulgaris LICME002 in the Applied Alumina Gas Distributor Bubbling Column Photobioreactor
ZHANG Qi1, GAO Zhen2, HUANG He1,2, LIANG Xi-hai1, JI Xiao-jun1, ZHENG Hong-li1, YIN Feng-wei1
1. Nanjing University of Technology, Jiangsu 210009, China;
2. State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu 210009, China
 全文: PDF(591 KB)   HTML
摘要:

光生物反应器设计中,气体分布器对微藻生长有较大的影响,尤其是在鼓泡式光生物反应器中更为显著。实验考察了采用氧化铝烧制的多孔气体分布器的5L鼓泡式光生物反应器中通气速率、CO2 浓度对小球藻LICME002生物量、叶绿素含量、油脂积累的影响。对该气体分布器下的CO2浓度和通气速率对小球藻的作用机理进行了初步的探讨。结果表明,CO2浓度为3%时,该株微藻生物量、叶绿素、油脂积累的最佳;CO2浓度超过6%时各项指标显著下降。通过对0.1vvm,0.4vvm,0.7vvm、1.0vvm的通气速条件下的各项指标的分析,确定最佳通气条件为0.4vvm。结论显示,在最佳通气速率和CO2浓度下,微藻生物量能达到1.52g/L,油脂含量达到31.5%。

关键词: 气体分布器通气速率小球藻二氧化碳光生物反应器油脂    
Abstract:

In the study of photobioreactor, gas distributor has great influence to the growth of microalgae, especially in the bubbling column reactor.The effect of the gas-flow rate and CO2 concentration on the biomass, chlorophyll a, and lipid accumulation of Chlorella vulgaris LICME002 in the 5L bubbling photobioreactor with a alumina gas distributor. The results showed that the 3% CO2 is the optimum condition for biomass, chlorophyll a, oil accumulation. When the CO2 concentration exceeded 6%, the algae's parameters decreased significantly. With the analysis of the algae's parameters at 0.1vvm,0.4vvm,0.7vvm, 1.0vvm, and the gas-flow rate 0.4vvm is the best one. Results showed that the optimum gas-flow rate and CO2 concentration, the microalgae biomass can achieve 1.52 g/L, oil content achieved 31.5%.

Key words: Gas distributor    Gas-flow rate    Chlorella vulgaris    CO2    Photobioreactor    Lipid
收稿日期: 2010-10-14 出版日期: 2011-04-01
ZTFLH:  Q949.2  
基金资助:

国家自然科学基金(20936002)、国家"973"计划(2007CB707805, 2009CB724700, 2011CB200906)、江苏省六大人才高峰项目 (2008)、江苏省高校科研成果产业化推进项目(2009)、教育部新世纪优秀人才支持计划(NCET-09-0157)、教育部霍英东教育基金(123014)资助项目

通讯作者: 高振     E-mail: gaozhen@njut.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张齐
高振
黄和
梁西海
纪晓俊
郑洪立
尹丰伟

引用本文:

张齐, 高振, 黄和, 梁西海, 纪晓俊, 郑洪立, 尹丰伟. 氧化铝气体分布器应用小球藻培养的研究[J]. 中国生物工程杂志, 2011, 31(03): 61-65.

ZHANG Qi, GAO Zhen, HUANG He, LIANG Xi-hai, JI Xiao-jun, ZHENG Hong-li, YIN Feng-wei. The Effect of Aeration on the Growth and Lipid Content on Chlorella vulgaris LICME002 in the Applied Alumina Gas Distributor Bubbling Column Photobioreactor. China Biotechnology, 2011, 31(03): 61-65.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2011/V31/I03/61

[1] Degen J, Uebele A, Retze A, et al. A novel airlift photobioreactor with baffles for improved light utilization through the flashing light effect. Biotechnol,2001, 92(2):89-94.
[2] Barbosa J, Janssen M, Ham N, et al. Microalgae cultivation in air-lift reactors: modeling biomass yield and growth rate as a function of mixing frequency. Biotechnol Bioeng,2003, 82(2):170-179.
[3] Vega-Estrada J, Montes-Horcasitas M C, Domínguez-Bocanegra AR, et al. Haematococcus pluvialis cultivation in split-cylinder internal-loop airlift. photobioreactor under aeration conditions avoiding cell damage. Appl Microbiol Biotechnol,2005, 68(1):31-35.
[4] Buwa V V, Ranade V V. Dynamics of gas-liquid flow in a rectangular bubble column: experiments and single/multi-group CFD simulations. Chem Eng,2002, 57(22-23):4715-4736.
[5] Buwa V V, Ranade V V. Characterization of dynamics of gas-liquid flows in rectangular bubble columns. A.I.Ch.E. J, 2003,12(50):2394-2407.
[6] Abraham M, Sawant S B. Effect of sparger design on the hydrodynamics and mass transfer characteristics of a bubble column. Indian Chem Eng, 1989,1:31-38.
[7] Li G, Yang X G, Dai G. CFD simulation of effects of the configuration of gas distributors on gas-liquid flow and mixing in a bubble column. Chemical Engineering Science,2009, 64(24):5104-5116.
[8] Li J M, Cheng L H, Xu X H. Enhanced lipid production of Chlorella vulgaris by adjustment of cultivation conditions. Bioresource Technology,2010, 101(17):6797-6804.
[9] Takagi M, Karseno, Yoshida T. Effect of salt concentration on intracellular accumulation of lipids and triacylglyceride in marine microalgae Dunaliella Cells. J Biosci Bioeng, 2006, 101(3):223-226.
[10] Chiu S Y, et al. Reduction of CO2 by a high-density culture of Chlorella sp.in a semicontinuous photobioreactor. Bioresource Technology,2008, 99(9):3389-3396.
[11] Hu H, Gao K. Optimization of growth and fatty acid composition of a unicellular marine picoplankton, Nannochloropsis sp., with enriched carbon sources.Biotechnol Lett,2003, 25(5):421-425.
[12] Watanabe Y, Ohmura N, Saiki H. Isolation and determination of cultural characteristics of microalgae which functions under CO2 enriched atmosphere. Energy Conversion Management,1992, 33 (5-8):545-552.
[13] Pronina N A, Kodama M, Miyachi S. Changes in intracellular pH values in various microalgae induced by raising CO2 concentrations. XV Int Botanical Cong,1993:419.
[14] Pulles Martin P J, Hans J. van Gorkoma, et al. Verschoora Primary reactions of Photosystem II at low pH. 2. Light-induced changes of absorbance and electron spin resonance in spinach chloroplasts. Biochimica et Biophysica Acta - Bioenergetics,1976, 1(440):98-106.
[15] Iwasaki I, Kurano N, Iwasaki I S M, et al. Effects of high-CO2 stress on photosystem II in a green alga, Chlorococcum littorale, which has a tolerance to high CO2.Journal of Photochemistry and Photobiology,1996, 3(36):327-332.
[16] Kaplan A, Reinhold L. CO2 concentrating mechanisms in photosynthetic microorganisms. Annu Rev Plant Physiol Plant Mol Biol, 1999,50:539-570.
[17] Giordano M, Beardall J, Raven J A. CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution. Annu Rev Plant Biol, 2005, 56:99-131.
[18] Lee J S, Shin C S, Park S C. CO2 fixation by Chlorella sp. KR-1 and its cultural characteristics. Bioresource Technol, 1999, 68(3):269-273.
[19] Zhang Y H, Yang S S. Some characteristics of microalgae isolated in Taiwan for biofixation of carbon dioxide. Bot Bull Acad Sinca, 2003, 44(1):43-52
[20] de Morais M G, Costa J A V. Biofixation of carbon dioxide by Spirulina sp and Scenedesmus obliquus cultivated in a three-stage serial tubular photobioreactor. J. Biotechnol, 2007, 129(3):439-445.
[21] de Morais M G, Costa J A V. Isolation and selection of microalgae from coal fired thermoelectric power plant for biofixation of carbon dioxide. Energy Conv Manag,2007, 48(7):2169-2173.
[22] Livne A, Sukenik A . Lipid Synthesis and A bundance of Acetyl CoA Carboxylase in Isochrysis galbana (Prymnesiophyceae) Following Nitrogen Starvation. Plant Cell Physiol,1992, 33(8):1175-1181.
[23] Sasaki Y, Nagano Y. Plant acetyl-CoA carboxylase: structure, biosynthesis, regulation, and genemanipulation for plant breeding. Bioscience, Biotechnology and Biochemistry,2004, 68 (6):1175-1184.
[24] Sukenik A, Line A.Variations in lipid and fatty acid content in relation to acetyl CoA carboxylase in the marine prymnesiophyte Isochrysis galbana. Plant Cell Physiol,1991, 32(3):371-378.
[25] Kinney A J. Genetic modification of the storage lipids of plants. Curr Opin Biotechnol,1994, 5(2):144-151.
[26] Falkowski P G, Raven J A. Aquatic photosynthesis. London: Blackwater Science,1997.375.
[27] Zilinskas B G, Zilinskas B B. Light absorption, emission and photosynthesis. Algal physiology and biochemistry. Oxford: Blackwell Scientiic Publications,1974.346-390.
[28] Prokop A, Erickson L E. Photobioreactors. In: Prokop A, Erickson L E, editiors. Bioreactor system design. New York: Marcel Dekker, Inc,1995.441-477.
[29] Merchuk J C. Shear Effects on Suspended Cells . Adv Biochem Eng,1991, 44: 65-95.
[30] Michels M H A, van der Goot A J, Norsker N H, et al. Effects of shear stress on the microalgae Chaetoceros muelleri. Bioprocess Biosyst Eng,2010, 33(8):921-927.
[31] Csordas A, Wang J K . An integrated photobioreact or and foam fractionation unit for the growth and harvest of Chaetoceros spp. in open systems. Aquacultural Engineering,2004, 30(1-2):15-30.

[1] 卫治金,李晓,王皓楠,尹永浩,郗丽君,葛保胜. 小球藻与固氮菌Mesorhizobium sp.共培养对小球藻生长和油脂积累的促进效果 *[J]. 中国生物工程杂志, 2019, 39(7): 56-64.
[2] 左正三,孙小曼,任路静,黄和. 微藻生产油脂培养新技术 *[J]. 中国生物工程杂志, 2018, 38(7): 102-109.
[3] 周琳, 汪靓, 高娟, 赵权宇, 魏伟, 孙予罕. 进化与未进化小球藻响应苯酚的转录组学分析[J]. 中国生物工程杂志, 2017, 37(7): 72-79.
[4] 夏乾竣, 王飞, 李迅. 解脂耶罗维亚酵母产油脂的研究进展[J]. 中国生物工程杂志, 2017, 37(3): 99-105.
[5] 韦璇, 郝雅荞, Susanna Leong Su Jan, 吴言, 柳叶飞, 赵洪新. Saccharomyces cerevisiaeYarrowia lipolytica对自由饱和脂肪酸的选择性吸收及胞内积累特性研究[J]. 中国生物工程杂志, 2017, 37(2): 63-73.
[6] 王雅南, 沈宏伟, 杨晓兵, 赵宗保. 不同营养元素限制对圆红冬胞酵母油脂生产的影响[J]. 中国生物工程杂志, 2016, 36(11): 16-22.
[7] 车绕琼, 黄力, 王琳, 赵鹏, 李涛, 余旭亚. 葡萄糖对单针藻异养、兼养生长及油脂合成的影响[J]. 中国生物工程杂志, 2015, 35(11): 46-51.
[8] 杨凯, 战景明, 高芬芳, 武宝利, 苏丽霞, 周文明, 薛向明, 郝杰, 赵阳. 小球藻用于生物柴油生产的研究进展[J]. 中国生物工程杂志, 2015, 35(11): 99-104.
[9] 雷学青, 卢哲, 高保燕, 张文源, 李爱芬, 张成武. 利用平板反应器大量培养高产油绿藻——尖状栅藻的生长和油脂积累规律[J]. 中国生物工程杂志, 2014, 34(11): 91-99.
[10] 许继飞, 张艳芬, 赵桂琦, 赵吉. 产油酵母利用不同基质累积油脂的研究进展[J]. 中国生物工程杂志, 2013, 33(9): 111-118.
[11] 王美玲, 薛超友, 赵方龙, 卢文玉. 混合油脂补料发酵提高多杀菌素的产量[J]. 中国生物工程杂志, 2013, 33(8): 56-60.
[12] 刘会影, 薛冬桦, 潘安龙, 徐洪章, 叶小金, 孙国英. 微生物油脂酯化工艺优化[J]. 中国生物工程杂志, 2013, 33(3): 92-98.
[13] 汪桂林, 桂小华, 邓伟, 赵志良, 姚杰, 闫云君. “异养-胁迫”分段培养对原始小球藻生物量和油脂含量影响研究[J]. 中国生物工程杂志, 2013, 33(3): 99-104.
[14] 黄力, 贺赐安, 赵鹏, 余旭亚. 碳源、氮源对异养单针藻Monoraphidium sp. FXY-10油脂积累和脂肪酸组成的影响[J]. 中国生物工程杂志, 2013, 33(2): 59-64.
[15] 李永富, 孟范平, 李祥蕾, 马冬冬. 光照对光生物反应器中微藻高密度光自养培养的影响[J]. 中国生物工程杂志, 2013, 33(2): 103-110.