Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2011, Vol. 31 Issue (03): 120-123    
综述     
真菌HSP30的研究概况
陈文静, 陈明, 许亦峰, 施碧红
福建师范大学生命科学学院 福州 350108
Studies of HSP30 from Fungi
CHEN Wen-jing, CHEN Ming, XU Yi-feng, SHI Bi-hong
College of Life Science, Fujian Normal University, Fuzhou 350108,China
 全文: PDF(337 KB)   HTML
摘要:

热休克蛋白30是小分子热休克蛋白(small heat shock proteins,sHSPs)中的一种,也是真菌中研究最广泛的小分子热休克蛋白。多种真菌编码热休克蛋白的基因序列已经被克隆和检测,HSP30的研究主要集中在应激水平下的表达和转录水平的调控,HSP30在应激反应中的合成机制仍不是很清楚,综述了它的研究概况以及应用前景。

关键词: 热休克蛋白HSP30真菌    
Abstract:

Heat shock protein 30 is one of small Heat Shock Proteins (sHSPs), and is being widely investigated in fungi. Genes encoding heat shock protein from different fungi have been cloned and tested. Studies on HSP30 was mainly focus on the expression of stress leves and transcriptional regulation,and the synthesis mechanism of HSP30 under stress response is still unclear. The research progress of HSP30 and its application prospect is reviewed.

Key words: Heat shock protein    HSP30    Fungi
收稿日期: 2010-09-27 出版日期: 2011-04-01
ZTFLH:  Q939.5  
基金资助:

通讯作者,

通讯作者: 陈文静     E-mail: Shibh@fjnu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
陈文静
陈明
许亦峰
施碧红

引用本文:

陈文静, 陈明, 许亦峰, 施碧红. 真菌HSP30的研究概况[J]. 中国生物工程杂志, 2011, 31(03): 120-123.

CHEN Wen-jing, CHEN Ming, XU Yi-feng, SHI Bi-hong. Studies of HSP30 from Fungi. China Biotechnology, 2011, 31(03): 120-123.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2011/V31/I03/120

[1] Hightower L E. Stress Proteins in Biology and Medicine. In: Richard I. Morimoto, Alfred Tissieres, Costa Georgopoulos. Cold Spring Harbor Monograph Series 19.X.NY: Cold Spring Harbor Laboratory,1990, 249(4968):572-573.
[2] Plesofsky-Vig N, Brambl R. Two developmental stages of Neurospora crassa utilize similar mechanisms for responding to heat shock but contrasting mechanisms for recovery. Mol Cell Biol, 1987, 7(9):3041-3048.
[3] Panaretou B, Piper P W. The plasma membrane of yeast acquires a novel heat-shock protein (hsp30) and displays a decline in proton-pumping ATPase levels in response to both heat shock and the entry to stationary phase. Eur J Biochem,1992, 206(3):635-640.
[4] Braley R, Piper P W. The C-terminus of yeast plasma membrane H+-ATPase is essential for the regulation of this enzyme by heat shock protein Hsp30, but not for stress activation. FEBS Lett, 1997, 418(1-2):123-126.
[5] Regnacq M, Boucherie H. Isolation and sequence of HSP30, a yeast heat-shock gene coding for a hydrophobic membrane protein. Curr Genet, 1993, 23(5-6):435-442.
[6] Kusakabe T, Koga K, Sugimoto Y. Isolation and characterization of cDNA and genomic promoter region for a heat shock protein 30 from Aspergillus nidulans. Biochim Biophys Acta, 1994, 1219(2):555-558.
[7] Iimura Y, Tatsumi K. Structure of genes for Hsp30 from the white-rot fungus Coriolus versicolor and the increase of their expression by heat shock and exposure to a hazardous chemical. Biosci Biotechnol Biochem, 2002, 66(7):1567-1570.
[8] Behzadi E, Behzadi P, Sirmatel F. Identification of 30kDa heat shock protein gene in Trichophyton rubrum. Mycoses, 2009, 52(3):234-238.
[9] Matsushita M, Tada S, Suzuki S, et al. Deletion analysis of the promoter of Aspergillus oryzae gene encoding heat shock protein 30. J Biosci Bioeng, 2009, 107(4):345-351.
[10] Piper P W, Ortiz-Calderon C, Holyoak C, et al. Hsp30, the integral plasma membrane heat shock protein of Saccharomyces cerevisiae, is a stress-inducible regulator of plasma membrane H(+)-ATPase. Cell Stress Chaperones, 1997, 2(1):12-24.
[11] Piper P W, Talreja K, Panaretou B, et al. Induction of major heat-shock proteins of Saccharomyces cerevisiae, including plasma membrane Hsp30, by ethanol levels above a critical threshold. Microbiology, 1994, 140 ( Pt 11):3031-3038.
[12] Do J H, Yamaguchi R, Miyano S. Exploring temporal transcription regulation structure of Aspergillus fumigatus in heat shock by state space model. BMC Genomics, 2009, 10:306.
[13] Seymour I J, Piper P W. Stress induction of HSP30, the plasma membrane heat shock protein gene of Saccharomyces cerevisiae, appears not to use known stress-regulated transcription factors. Microbiology, 1999, 145 ( Pt 1):231-239.
[14] Shalev A, Valasek L, Pise-Masison C A, et al. Saccharomyces cerevisiae protein Pci8p and human protein eIF3e/Int-6 interact with the eIF3 core complex by binding to cognate eIF3b subunits. J Biol Chem, 2001, 276(37):34948-34957.
[15] Galeote V A, Alexandre H, Bach B, et al. Sfl1p acts as an activator of the HSP30 gene in Saccharomyces cerevisiae. Curr Genet, 2007, 52(2):55-63.
[16] Thakur S, Chakrabarti A. Saccharomyces cerevisiae Hsp30 is necessary for homeostasis of a set of thermal stress response functions. J Microbiol Biotechnol, 2010, 20(2):403-409.
[17] Machida M. Progress of Aspergillus oryzae genomics. Adv Appl Microbiol, 2002, 51:81-106.
[18] Minetoki T, Gomi K, Kitamoto K, et al. Characteristic expression of three amylase-encoding genes, agdA, amyB, and glaA in Aspergillus oryzae transformants containing multiple copies of the agdA gene. Biosci Biotechnol Biochem, 1995, 59(12):2251-2254.
[19] Ishida H, Hata Y, Kawato A, et al. Improvement of the glaB promoter expressed in solid-state fermentation (SSF) of Aspergillus oryzae. Biosci Biotechnol Biochem, 2006, 70(5):1181-1187.
[20] Ishida H, Matsumura K, Hata Y, et al. Establishment of a hyper-protein production system in submerged Aspergillus oryzae culture under tyrosinase-encoding gene (melO) promoter control. Appl Microbiol Biotechnol, 2001, 57(1-2):131-137.
[21] Kitamoto N, Matsui J, Kawai Y, et al. Utilization of the TEF1-alpha gene (TEF1) promoter for expression of polygalacturonase genes, pgaA and pgaB, in Aspergillus oryzae. Appl Microbiol Biotechnol, 1998, 50(1):85-92.
[22] Faergemann J, Correia O, Nowicki R, et al. Genetic predisposition-understanding underlying mechanisms of onychomycosis. J Eur Acad Dermatol Venereol, 2005, 19 Suppl 1:17-19.
[23] Maranhao F C, Paiao F G, Martinez-Rossi N M. Isolation of transcripts over-expressed in human pathogen Trichophyton rubrum during growth in keratin. Microb Pathog, 2007, 43(4):166-172.
[24] Fedorova N D, Khaldi N, Joardar V S, et al. Genomic islands in the pathogenic filamentous fungus Aspergillus fumigatus. PLoS Genet, 2008, 4(4):e1000046.

[1] 林艳梅,罗湘,李瑞杰,秦秀林,冯家勋. 纤维二糖水解酶N-糖基化对其在草酸青霉中的分泌和酶活影响*[J]. 中国生物工程杂志, 2021, 41(4): 18-29.
[2] 饶海密,梁冬梅,李伟国,乔建军,财音青格乐. 真菌芳香聚酮化合物的合成生物学研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 52-61.
[3] 胡益波,皮畅钰,张哲,向柏宇,夏立秋. 丝状真菌蛋白表达系统研究进展*[J]. 中国生物工程杂志, 2020, 40(5): 94-104.
[4] 杨隆兵,国果,马慧玲,李妍,赵欣宇,苏佩佩,张勇. 家蝇抗菌肽AMPs17蛋白原核表达条件的优化及其抗真菌活性检测 *[J]. 中国生物工程杂志, 2019, 39(4): 24-31.
[5] 吴果果,宋淑婷,岳荣,张晶,关莹,王玥,刘宝爱,吕学敏,魏建军,张会图. 反向筛选标记基因upp在杀真菌链霉菌遗传改造中的应用 *[J]. 中国生物工程杂志, 2019, 39(11): 78-86.
[6] 黄宇,黄书婷,张夕梅,刘堰. 稀有鮈鲫HSP70基因启动子的克隆及功能分析[J]. 中国生物工程杂志, 2019, 39(10): 9-16.
[7] 来亚鹏, 邓婷婷, 刘刚, 王娟. 同源过表达BglR对嗜热毁丝霉β-葡萄糖苷酶活性的影响[J]. 中国生物工程杂志, 2017, 37(7): 64-71.
[8] 侯兵晓, 刘珊娜, 王斌斌, 朱宏吉, 乔建军. 热休克蛋白调控机制[J]. 中国生物工程杂志, 2016, 36(9): 87-93.
[9] 吕珊珊, 侯运华, 闫孟节, 钟耀华. 工业真菌高效产酶突变技术与高产机制[J]. 中国生物工程杂志, 2016, 36(3): 111-119.
[10] 任琴, 郭志鸿, 王亚军, 谢忠奎, 王若愚. RNA干扰及其在增强作物抵抗有害真核生物研究中的应用[J]. 中国生物工程杂志, 2015, 35(6): 80-89.
[11] 易学瑞, 袁有成, 龚亮, 张欣蕊, 李娜, 孔祥平. 8种天然药物与硼替佐米对HBsAg抑制作用及蛋白质组学分析[J]. 中国生物工程杂志, 2015, 35(11): 29-35.
[12] 严菊芬, 齐宁波, 王素萍, 赵健烽, 杨树林. 温莪术内生真菌Gibberella moniliformis EZG0807诱变及其诱变株遗传稳定性研究[J]. 中国生物工程杂志, 2014, 34(5): 23-29.
[13] 韩启灿, 霍光华, 罗桂祥. 一株病原拮抗野生菌株的筛选、鉴定及其发酵工艺优化[J]. 中国生物工程杂志, 2014, 34(5): 66-74.
[14] 胡彬彬, 林连兵, 魏云林, 季秀玲, 张琦. 一种高效的真菌总蛋白质提取方法[J]. 中国生物工程杂志, 2013, 33(9): 53-58.
[15] 邵子静, 蒋楠, 晏华立, 詹诚, 徐莺, 陈放. 麻疯树核糖体失活蛋白Curcin2的原核可溶性表达及其抗真菌活性研究[J]. 中国生物工程杂志, 2013, 33(7): 43-49.