
代谢工程在核黄素生产上的应用
Application of Metabolic Engineering in Riboflavin Production
核黄素(维生素B2)为天然水溶性的B族维生素,是维持机体代谢所必须的营养物质。目前核黄素的工业化生产主要有微生物发酵法和化学半合成法两种,其中微生物发酵法以生产工艺简单、原料廉价、环境友好以及资源可再生等优点而倍受世界核黄素生产商的青睐。代谢工程是近二十年来发展起来的新型学科,主要利用分子生物学技术对细胞进行遗传修饰,从而改进产物生成或细胞特性。为进一步提高核黄素产量,通过代谢工程手段构建出了核黄素高产菌株,其中尤以枯草芽孢杆菌最为成功。要得到较高的核黄素产率,必须保证碳架、能量等价物以及氧化还原辅(酶)因子在细胞代谢过程中处于适当的比率。以枯草芽孢杆菌进行核黄素生产为例,主要从增强碳源和能源利用效率、增强核黄素生物合成途径代谢流以及解除核黄素生物合成过程中的反馈调节方面综述了代谢工程在指导核黄素生产方面的应用,并讨论了其未来的发展方向。
Riboflavin (Vitamin B2) is a precursor to coenzymes such as flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN). It can be commercially produced either by a semi-chemical synthesis or by fermentation with some microorganisms. Because of the advantages of biotechnical process, such as cost effectiveness, reduction in waste and energy and use of renewable resources, biotechnical route has become popular for riboflavin producer. In order to acquire riboflavin over-producing strains, research has been concentrated on metabolically modified strains by finalizing the relationships of genes and enzymes, dissecting the complex regulatory apparatus that governs expression of the rib genes and identifying transport gene. The engineered riboflavin overproducing Bacillus subtilis is one of the most successful examples. Metabolic engineering is a new developing subject in recent twenty years, which made celluar genetic modification to improve production or celluar peculiarity. To maximize the conversion of substrate carbon to desired end products, building blocks, energy equivalents, and redox cofactors must be guaranteed at an appropriate rate and stoichiometry by cellular catabolism. The applications and the trends of metabolic engineering in riboflavin production by Bacillus subtilis were summarized. The applications involved the improvement of the efficiency of carbon and energy utilization, enhancement of metabolic flux and deregulating of the process in riboflavin biosynthetic pathway.
核黄素 / 代谢工程 / 代谢通量分析 / 枯草芽孢杆菌 {{custom_keyword}} /
Riboflavin / Metabolic engineering / Metabolic flux analysis / Bacillus subtilis {{custom_keyword}} /
[1] McCormick D. Two interconnected B vitamins: riboflavin and pyridoxine. Physiol Rev, 1989, 69:1170-1198.
[2] 尹光琳,战立克,赵根楠著.发酵工业全书.北京:中国医药科技出社,1992.237-248. Yi G L ,Zhan L K, Zhao G N. Book of Fermentation Industry. Beijing:Chinese Medical Science and Technology Press,1992.237-248.
[3] 童朝阳,徐琪寿.核黄素的药理作用及应用前景.军事医学科学院院刊,2003,27(3):223-226. Tong Z Y, Xu Q S.Bulletin of the Academy of Military Medical Sciences,2003, 27(3):223-226.
[4] Dalton S D, Rahimi A R. Emerging role of riboflavin in the treatment of nucleoside analogue-induced type B lactic acidosis. AIDS Patient Care STDS,2001,15:611-614.
[5] Stahmann K P, Revuelta J L, Seulberger H. Three biotechnical processes using Ashbya gossypii, Candida famata or Bacillus subtilis compete with chemical riboflavin production. Appl Microbiol Biotechnol, 2000, 53:509-516.
[6] Heefner D, Weaver C A, Yarus M J,et al. Riboflavin producing strains of microorganisms, method for selecting, and method for fermentation. Wo 09822,1988-06.
[7] Lee K H, Park Y H, Han J K, et al. Microorganism for producing riboflavin and method for producing riboflavin using the same. WO 050863 A1, 2004.
[8] Mironov A S, Korolkova N V, Errais L L, et al. Method for producing riboflavin.WO 046347 A1, 2004.
[9] Marcus S, Ajay S, Owen P W. Development in the use of Bacillus species for industrial production. Can J Microbiol,2004, 50:1-17.
[10] 武秋立. 重组枯草芽孢杆菌生产核黄素发酵优化及代谢组学研究.天津大学博士学位论文,天津:天津大学,2007. Wu Q L. Study on riboflavin fermentation optimization and metabolomics of recombinant Bacillus subtilis, Ph.D dissertation,Tianjin: Tianjin University, 2007.
[11] Bailey J E. Towards a science of metabolic engineering. American Association for the Advancement of Science,1991, 252:1668-1675.
[12] Stephanopulos G N, Aristidou A A, Nielsen J. Metabolic Engineering Principle and Methodologies. Academic Press,1998.
[13] Heinrich R, Schuster S. The modeling of metabolic systems: structure, control and optimality. Biosystems, 1998,47(1):61-77.
[14] Varner J, Ramkrishna D. Mathmatical modes of metabolic pathways. Curr Opin Biotechnol, 1999,10(2):146-150.
[15] Gombert A K, Nielsen J. Mathematical modeling of metabolism.Curr Opin Biotechnol, 2000,11(2):180-186.
[16] 李晓静,陈涛,陈洵,等. 13C代谢通量分析.化学进展,2006,18(7/8):995-1001. Li X J, Chen T, Chen X, et al.Progress in Chemistry,2006,18(7/8):995-1001.
[17] Lee S Y, Hong S H, Moon S Y. In silico metabolic pathway analysis and design: succinic acid production by metabolically engineered Escherichia coli as an example. Genome Inform, 2002,13:214-223.
[18] Bai D M, Zhao X M, Li X G, et al. Strain improvement and metabolic flux analysis in the wild-type and a mutant Lactobacillus lactis atrain for L(+)-lactic acid production. Biotechnol Bioeng, 2004, 88(6):681-689.
[19] 陈涛,王靖宇,周士奇,等. 基因组改组及代谢通量分析在产核黄素Bacillus subtilis性能改进中的应用. 化工学报, 2004,55(11):1842-1848. Chen T, Wang J Y, Zhou S Q, et al. Journal of Chemical Industry and Engineering, 2004,55(11):1842-1848.
[20] Zamboni N, Fischer E, Muffler A, et al. Transient expression and flux changes during a shift from high to low riboflavin production in continuous cultures of Bacillus subtilis. Biotechnol Bioeng, 2005, 89(2):219-232.
[21] Franzén C J. Metabolic flux analysis of RQ-controlled microaerobic ethanol production by Saccharomyces cerevisiae. Yeast, 2003, 20:117-132.
[22] Dunn W B, Ellis D I. Metabolomics: Current analytical platforms and methodologies. Trends Ana Chem, 2005, 24 (4):285-294.
[23] Wiback S J, Mahadevan R, Palsson B. Using metabolic flux data to further constrain the metabolic solution space and predict internal flux patterns: the Escherichia coli spectrum. Biotechnol Bioeng, 2004,86(3):317-331.
[24] Riascos C A M, Gombert A K, Pinto J M. A global optimization approach for metabolic flux analysis based on labeling balance. Compu Chem Eng, 2005, 29:447-458.
[25] Stulke J,Hillen W. Regulation of carbon catabolism in Bacillus species. Annu Rev microbial, 2000, 54:849-880.
[26] Dauner M, Sauer U. Stoichiometric growth model for riboflavin producing Bacillus subtilis. Biotechnol and Bioeng, 2001, 76 (2):132-143.
[27] Ludwig H, Rebhan N, Blencke H M, et al. Control of the glycolytic gapA operon by the catabolite control protein A in Bacillus subtilis: a novel mechanism of CcpA mediated regulation. Mol Microbiol, 2002, 45(2):543-553.
[28] Russell J B, Cook G M. Energetics of bacterial growth: balance of anabolic and catabolic reactions. Microbiol Rev, 1995, 59(1):48-62.
[29] Jense K F, Pederson S. Metabolic growth rate control in Escherchia coli may be a consequence of subsaturation of macromolecular apparatus with substrates and catalytic components. Microbiol Rev, 1990, 54:89-100.
[30] Van de Walle M, Shiloach J. Proposed mechanism of actete accumulation in two recombinant Escherichia coli strains during high density fermentation. Biotechnol Bioeng, 1998, 57(1):71-78.
[31] 马红武.由发酵实验数据和基因组信息基于计量关系分析代谢网络.天津大学博士论文,天津:天津大学,2001. Ma H W. Metabolic network analysis based on stoichiometric relations from the fermentation data and the genomic information . Ph.D dissertation, Tianjin:Tianjin University, 2001.
[32] Sauer U. Cameron D C, Baily J E. Metabolic capacity of Bacillus subtilis for the production of purine nucleosides, riboflavin, and folic acid. Biotechnol Bioeng, 1998, 59(2):227-238.
[33] 段云霞.产核黄素工程菌B. subtilis PY的代谢工程研究.天津大学博士论文,天津:天津大学,2008,73-85. Duan Y X. Metabolic engineering of Bacillus subtilis PY for riboflavin production. Ph.D dissertation, Tianjin:Tianjin University, 2008.73-85.
[34] Zhu Y B, Chen X, Chen T, et al. Enhancement of riboflavin production by overexpression of acetolactate synthase inapta mutant of Bacillus subtilis. FEMS Microbiol Lett, 2007,266: 224-230.
[35] Zamboni N. Metabolic engineering of respiration for improved riboflavin production and elucidation of NADPH metabolism in Bacillus subtilis. Ph.D dissertation,Zürich Switzerland,Swiss Federal Institute of Technology,2003.
[36] Trumpower B L, Gennis R B. Energy transduction by cytochrome complexes in mitochondrial and bacterial respiration: The enzymology of coupling electron transfer reactions to transmembrane proton translocation. Annu Rev Biochem,1994,63:675-716.
[37] Sauer U, Bailey J E. Estimation of P-to-O ration in Bacillus subtilis and its influence on maximum riboflavin yield. Biotechnol Bioeng, 1999, 64:750-754.
[38] Dauner M, Storni T, Sauer U. Bacillus subtilis metabolism and energetics in carbon-limited and excess-carbon chemostat culture. J Bacteriol, 2001,183(24):7308-7317.
[39] Zamboni N, Mouncey N, Hohmann H P, et al. Reducing maintenance metabolism by metabolic engineering of respiration improves riboflavin by Bacillus subtilis. Metab Eng, 2003,5:49-55.
[40] 李晓静. 枯草芽孢杆菌核黄素操纵子及呼吸链的代谢工程改造.天津大学博士论文,天津:天津大学,2006. Li X J. Metabolic engineering of riboflavin operon and respiratory chain of Bacillus subtilis. Ph.D dissertation, Tianjin: Tianjin University, 2006.
[41] Dauner M,Sauer U. Stiochiometric growth model for riboflavin producing Bacillus subtilis. Biotechnol and Bioeng, 2001, 76 (2):132-143.
[42] Li X J, Chen T, Chen X, et al. Redirection electron flow to high coupling efficiency of terminal oxidase to enhance riboflavin biosynthesis. Appl Microbiol Biotechnol,2006,73:374-383.
[43] Burrows R B. Presence in E.coli of deaminase and reductase involved in biosynthesis of riboflavin. J Bacteriol, 1978, 136 (2): 657-667.
[44] Hümbelin M , Griesser V , Keller T, et al. GT Pcyclohydrolase II and 3,4-dihydroxy-2-butanone 4-phosphate synthase are rate-limiting enzymes in riboflavin synthesis of an industrial Bacillus subtilis strain used for riboflavin production. J Ind Microbiol Biotechnol, 1999, 22: 1-7.
[45] Sauer U, Hatzimanikatis V, Bailey J E, et al. Metabolic fluxes in riboflavin-producing Bacillus subtilis. Nat Biotechnol, 1997, 15:448-452.
[46] Stepanov G. Production of riboflavin by bacteria. French patent, 2546907,1984-12.
[47] Chen Xun. New approaches to construction of recombinant strains-riboflavin producers. Ph.D dissertation, MOSCOW,State Scientific Research Institute of Genetics and Selection of Industrial Microorganisms,1997.
[48] Chen T, Chen X, Wang J Y, et al. Effect of riboflavin operon dosage on riboflavin productivity in Bacillus subtilis. Transactions of Tianjin University, 2005, 11(1):1-5.
[49] Perkins J B, Sloma A, Hermann T, et al. Genetic engineering of Bacillus subtilis for the commercial production of riboflavin. J Ind Microbiol Biotechnol, 1999, 22:8-18.
[50] Duan Y X, Chen T, Chen X, et al. Enhanced riboflavin production by expressing heterologous riboflavin operon from B.cereus ATCC14579 in Bacillus subtilis. Chinese Journal of Chemical Engineering, 2010,18(1):129-136.
[51] Zamboni N, Fischer E, Laudert D, et al. The Bacillus subtilis yqjI gene encodes the NADP+-dependent 6-P-gluconate dehydrogenase in the pentose phosphate pathway. J Bacteriol, 2004,14:4528-4534.
[52] Moszer I, Jones LM, Moreira S, et al. SubtiList: the reference database for the Bacillus subtilis genome. Nucleic Acids Res, 2002, 30(1):62-65.
[53] Duan Y X, Chen T, Chen X, et al. Overexpression of glucose-6-phosphate dehydrogenase enhances riboflavin production in Bacillus subtilis.Appl Microbiol Biotechnol,2010,85:1907-1914.
[54] Zamboni N, Fischer E, Muffler A, et al. Transient expression and flux changes during a shift from high to low riboflavin production in continuous cultures of Bacillus subtilis. Biotechnol. Bioeng,2005,89(2):219-232.
[55] Zhu Y B, Chen X, Chen T, et al. Over-expression of glucose dehydrogenase improves cell growth and riboflavin production in Bacillus subtilis. Biotechnol Lett ,2006, 28:1667-1672.
[56] Shi S B, Shen Z, Chen X, et al. Increased production of riboflavin by metabolic engineering of the purine pathway in Bacillus subtilis.Biochemical Engineering Journal, 2009, 46:28-33.
[57] Shi S B, Chen T, Chen X, et al. Enhancing riboflavin production by genetic modification of purine pathway in Bacillus subtilis.Journal of Biotechnology, 2008, 136S:35.
[58] 陈涛.基于基因组重排的产核黄素枯草芽孢杆菌的代谢工程.天津大学博士论文,天津:天津大学,2004. Chen T. Trait improvement of riboflavin-producing Bacilus subtilis by genome shuffling and metabolic flux analysis . Ph.D dissertation,Tianjin: Tianjin University, 2004.
[59] Perkins J B, Alan S, Janiee G P, et al. Bacterial strains which overproduced riboflavin.US patent, 5925538,1999.
[60] Perkins J B, Pero J G, Sloma A. Riboflavin overproducing strains of bacteria. European patent application 0405370,1991-01.
[61] Winkler W C,Cohen-chalamish, Breaker R R. An mRNA structure that controls gene expression by binding FMN. Proc Natl Acad Sci, 2002, 99(25): 15908-15913.
[62] Solovieva M, Kreneva R A, Leak D J, et al. The ribR gene encodes a monofunctional riboflavin kinase which is involved in regulation of the Bacillus subtilis riboflavin operon. Microbiol, 1999, 145:67-73.
[63] Mandal M, Boese B, Barrick J E, et al. Riboswitches control fundamental biochemical pathways in Bacillus subtilis and other bacteria. Cell, 2003, 113(5): 577-586.
[64] Coquard D. Molecular cloning and characterisation of the ribC gene from Bacillus subtilis: a point mutation in ribC results in riboflavin overproduction. Mol Gen Genet,1997,254:81-84.
[65] 张会图,姚斌,范云六.核黄素基因工程研究进展,中国生物工程杂志,2004,24(12):32-38. Zhang H T,Yao B,Fan Y L.China Biotechnology,2004,24(12):32-38.
[66] Mironov A S, Gusarov I, Rafikov R, et al. Sensing small molecules by nascent RNA:a mechanism to control transcription in bacteria.Cell,2002,111(5):747-756.
/
〈 |
|
〉 |