Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2011, Vol. 31 Issue (01): 70-74    
综述     
干细胞定向分化胰岛β细胞新进展
沈益行, 曾凡一
上海交通大学医学院 医学科学院发育生物学研究室 上海 200025
Progress in the Differentiation of Stem Cells into Pancreatic β Cells
SHEN Yi-hang, ZENG Fan-yi
Department of Development Biology, Institute of Medical Science, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
 全文: PDF(528 KB)   HTML
摘要:

在治疗糖尿病领域里,干细胞定向分化成胰岛β细胞是目前新颖又有前景的一种糖尿病治疗策略,不仅克服了注射胰岛素所带来的并发症,还避免了胰岛移植供体来源的短缺不足。目前供体细胞的材料主要有从胰腺中分离出的胰腺干细胞/胰腺祖细胞、胰腺导管细胞、胰腺泡细胞、肝实质细胞、小肠细胞、神经干细胞、ES细胞以及近来研究热点之一的iPS细胞。以上这些细胞都被证明或多或少具备分化成胰岛素分泌的细胞形态的潜力。在体外分化技术方面,国际上有D’Amour法、Lumelsky法等。现对干细胞定向分化胰岛β细胞的一些研究概况作简单评述。

关键词: 胰十二指肠同源异型盒基因(Pdx1)胰高血糖素样肽-1(GLP1)干细胞定向分化胰岛β细胞    
Abstract:

The differentiation of stem cells into pancreatic β cells is a promising and novel strategy for the treatment of diabetes. This method would not only avoid the complications of insulin injections, but also reduce treatment delays due to shortages of donors for pancreatic islet transplantion. The cell types shown to have at least some potential for differentiation into insulin-secreting cells include pancreatic stem progenitor cells, pancreatic duct cells, acinar cells, liver/intestinal cells, embryonic stem cells and induced pluripotent stem (iPS) cells. The methods described most often for differentiating these cells into pancreatic β cells in vitro include variations of the D'Amour protocol and the Lumelsky protocol.Recent progresses in the directed differentiation of stem cells into pancreatic β cells was summarized.

Key words: Stem cell    Directed differentiation    Pancreatic &beta    cell    Pancreatic and duodenal homeobox 1 (Pdx1)    Glucagon-like peptide 1 (GLP-1)
收稿日期: 2010-08-06 出版日期: 2011-01-25
ZTFLH:  Q254  
基金资助:

国家"973"计划(2007CB947800)、上海市科学技术委员会(08dj1400502)、上海市教委(S30201)资助项目

服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
沈益行
曾凡一

引用本文:

沈益行, 曾凡一. 干细胞定向分化胰岛β细胞新进展[J]. 中国生物工程杂志, 2011, 31(01): 70-74.

SHEN Yi-hang, ZENG Fan-yi. Progress in the Differentiation of Stem Cells into Pancreatic β Cells. China Biotechnology, 2011, 31(01): 70-74.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2011/V31/I01/70


[1] Bonner-Weir S, Inada A, Yatoh S, et al. Transdifferentiation of pancreatic ductal cells to endocrine beta-cells. Biochem Soc Trans,2008,36(Pt 3):353-356.

[2] Mihm S. Hepatitis C virus, diabetes and steatosis: clinical evidence in favor of a linkage and role of genotypes. Dig Dis,2010,28(1):280-284.

[3] Lik Sprava. Oxidative stress in patients with type I diabetes mellitus and persistent coxsackie virus B infection as the reason of dysfunction of the immune system.Lik Spraua,2009(7-8):11-14.

[4] Docherty K. Pancreatic stellate cells can form new beta-like cells. Biochem J, 2009,421(2):e1-4.

[5] Ryan E A, Lakey J R, Paty B W, et al. Successful islet transplantation: continued insulin reserve provides long-term glycemic control. Diabetes,2002,51(7):2148-2157.

[6] Takahashi K, Yamanaka S.Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell,2006,126(4):663-676.

[7] Ahlgren U, Jonsson J, Jonsson L, et al.Beta-cell-specific inactivation of the mouse Ipf1/Pdx1 gene results in loss of the beta-cell phenotype and maturity onset diabetes. Genes Dev,1998,12(12):1763-1768.

[8] Noguchi H. Production of pancreatic beta-cells from stem cells. Curr Diabetes Rev,2010,6(3):184-190.

[9] Lavon N, Yanuka O, Benvenisty N. The effect of overexpression of Pdx1 and Foxa2 on the differentiation of human embryonic stem cells into pancreatic cells. Stem Cells,2006,24(8):1923-1930.

[10] Zhou J, Pineyro M A, Wang X, et al. Exendin-4 differentiation of a human pancreatic duct cell line into endocrine cells: involvement of PDX-1 and HNF3beta a transcription factors. J Cell Physiol,2002,192(3):304-314.

[11] Suzuki A, Nakauchi H, Taniguchi H. Glucagon-like peptide 1(1-37) converts intestinal epithelial cells into insulin-producing cell. Proc Natl Acad Sci USA,2003,100(9):5034-5039.

[12] Nakajima-Nagata N, Sakurai T, Mitaka T, et al. In vitro induction of adult hepatic progenitor cells into insulin-producing cells. Biochem Biophys Res Commun,2004,318(3):625-630.

[13] Meglasson M D, Matschinsky F M. Pancreatic islet glucose metabolism and regulation of insulin secretion. Diabetes Metab Rev. 1986,2(3-4):163-214.

[14] Watada H, Kajimoto Y, Umayahara Y, et al. The human glucokinase gene beta-cell-type promoter: an essential role of insulin promoter factor 1/PDX-1 in its activation in HIT-T15 cells. Diabetes, 1996,45(11):1478-1488.

[15] O’Brien T D, Westermark P, Johnson K H. Islet amyloid polypeptide (IAPP) does not inhibit glucose-stimulated insulin secretion from isolated perfused rat pancreas. Biochem Biophys Res Commun, 1990,170(3):1223-1228.

[16] Park J Y, No H S, Ahn Y R, et al. Pathologic changes and glucose homeostasis according to expression of human islet amyloid polypeptide in type 2 diabetic patients. J Histochem Cytochem,2010,58(8):731-740.

[17] Clark A, Nilsson M R. Islet amyloid: a complication of islet dysfunction or an aetiological factor in Type 2 diabetes? Diabetologia,2004,47(2):157-169.

[18] Miyatsuka T, Kosaka Y, Kim H, et al. Neurogenin3 inhibits proliferation in endocrine progenitors by inducing Cdkn1a. Proc Natl Acad Sci USA,2011,108(1):185-190.

[19] Zhou Q, Brown J, Kanarek A, et al. In vivo reprogramming of adult pancreatic exocrine cells to beta-cells. Nature,2008,455(7213):627-632.

[20] Zhao M, Amiel S A, Ajami S, et al. Amelioration of streptozotocin-induced diabetes in mice with cells derived from human marrow stromal cells. PLoS One,2008,3(7):e2666.

[21] Naya F J, Huang H P, Qiu Y, et al. Diabetes, defective pancreatic morphogenesis, and abnormal enteroendocrine differentiation in BETA2/neuroD-deficient mice. Gene Dev, 1997,11(18):2323-2334.

[22] Smith S B, Ee H C, Conners J R, et al. Paired-homeodomain transcription factor PAX4 acts as a transcriptional repressor in early pancreatic development. Mol Cell Biol, 1999,19(12):8272-8280.

[23] Oliver-Krasinski J M, Stoffers D A. On the origin of the beta cell. Genes Dev,2008,22(15):1998-2021.

[24] Spence J R, Wells J M. Translational embryology: using embryonic principles to generate pancreatic endocrine cells from embryonic stem cells. Dev Dyn,2007,236(12):3218-3227.

[25] Liu G L, Lu Y F, Li W J, et al. Differentiation of marrow-derived islet-like cells and their effects on diabetic rats. Chin Med J (Engl). 2010,123(22):3347-3350.

[26] Karaoz E, Ayhan S, Okcu A, Aksoy A et al. Bone marrow-derived mesenchymal stem cells co-cultured with pancreatic islets display β cell plasticity. J Tissue Eng Regen Med,in Press.

[27] Phuc P V, Nhung T H, Loan D T, et al. Differentiating of banked human umbilical cord blood-derived mesenchymal stem cells into insulin-secreting cells. In Vitro Cell Dev Biol Anim,in Press.

[28] Noguchi H, Matsumoto S, Ueda M, et al. Method for isolation of mouse pancreatic stem cells. Transplant Proc,2008,40(2):422-423.

[29] Yatoh S, Dodge R, Akashi T, et al. Differentiation of affinity-purified human pancreatic duct cells to beta-cells. Diabetes,2007,56(7):1802-1809.

[30] Li X Y, Zhan X R, et al. CREB is a regulatory target for the protein kinase Akt/PKB in the differentiation of pancreatic ductal cells into islet β-cells mediated by hepatocyte growth factor. Biochem Biophys Res Commun,in Press.

[31] Lardon J, Huyens N, Rooman I, et al. Exocrine cell transdifferentiation in dexamethasone-treated rat pancreas. Virchows Arch, 2004,444(1):61-65.

[32] D’Amour K A, Bang A G, Eliazer S, et al. Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat Biotechnol,2006,24(11):1392-1401.

[33] D’Amour K A, Agulnick A D, Eliazer S, et al. Efficient differentiation of human embryonic stem cells to definitive endoderm. Nat Biotechnol, 2005,23(12):1534-1541.

[34] Borowiak M, Maehr R, Chen S, et al. Small molecules efficiently direct endodermal differentiation of mouse and human embryonic stem cells. Cell Stem Cell,2009,4(4):348-358.

[35] Kroon E, Martinson L A, Kadoya K, et al. Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat Biotechnol, 2008,26(4): 443-452.

[36] Kumar M, Jordan N, Melton D, et al. Signals from lateral plate mesoderm instruct endoderm toward a pancreatic fate. Dev Biol,2003,259(1):109-122.

[37] Lumelsky N, Blondel O, Laeng P, et al. Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets. Scinece,2001,292(5520):1389-1394.

[38] Ibii T, Shideaki H, Miura M, et al. Possibility of insulin-producing cells derived from mouse embryonic stem cells for diabetes treatment. J Biosci Bioeng, 2006, 103(2): 140-146.

[39] Liu H, Xue W J, Fen X S, et al. Differentiation of insulin-producing cells from mice embryonic stem cells R1. Sciencepaper Online,2009.

[40] Fujikawa T, Oh S H, Pi L, et al. Teratoma formation leads to failure of treatment of type I diabetes using embryonic stem cell-derived insulin-producing cells. Am J Pathol,2005,166(6):1781-1791.

[41] Zhao X Y, Li W, Lv Z, et al. iPS cells produce viable mice through tetraploid complementation. Nature,2009,461(7260):86-90.

[42] Masip M, Veiga A, Izpisua J C, et al. Reprogramming with defined factors: from induced pluripotency to induced transdifferentiation. Mol Hum Reprod,2010,16(11):856-868.

[43] Seki T, Yuasa S, Oda M, et al. Generation of induced pluripotent stem cells from human terminally differentiated circulating T cells. Cell Stem Cell,2010,7(1):11-14.

[44] Zhang D, Jiang W, Liu M, et al. Highly efficient differentiation of human ES cells and iPS cells into mature pancreatic insulin-producing cells. Cell Res,2009,19(4):429-438.

[1] 钱昱,丁晓雨,刘志强,袁增强. 基因修饰人多能干细胞的高效单克隆建系方法[J]. 中国生物工程杂志, 2021, 41(8): 33-41.
[2] 王宇轩,陈婷,张永亮. MiR-148生物学功能研究进展*[J]. 中国生物工程杂志, 2021, 41(7): 74-80.
[3] 李开秀,司维. 间充质干细胞来源的外泌体治疗炎症性肠病研究进展*[J]. 中国生物工程杂志, 2021, 41(7): 66-73.
[4] 赵久梅,王哲,李学英. 调控软骨形成的信号通路及相关因子在骨髓间充质干细胞骨向分化中的作用*[J]. 中国生物工程杂志, 2021, 41(10): 62-72.
[5] 陈飞,王晓冰,徐增辉,钱其军. 干细胞改善糖尿病的分子机制及临床研究进展[J]. 中国生物工程杂志, 2020, 40(7): 59-69.
[6] 戴奇男,张景红. 肿瘤多药耐药与自噬、DNA修复和肿瘤干细胞相关的分子机制研究进展 *[J]. 中国生物工程杂志, 2020, 40(4): 69-77.
[7] 苑亚坤,刘广洋,刘拥军,谢亚芳,吴昊. 间充质干细胞基础研究与临床转化的中美比较[J]. 中国生物工程杂志, 2020, 40(4): 97-107.
[8] 杨丹,田海山,李校堃. 成纤维细胞生长因子5的研究进展 *[J]. 中国生物工程杂志, 2020, 40(3): 117-124.
[9] 李玉,张晓. 日本细胞治疗监管双轨制的经验及启示 *[J]. 中国生物工程杂志, 2020, 40(1-2): 174-179.
[10] 陈利军,屈晶晶,项春生. 间充质干细胞在2019新型冠状病毒肺炎(COVID-19)中的治疗潜能、临床研究与应用前景*[J]. 中国生物工程杂志, 2020, 40(11): 43-55.
[11] 邱丹丹,陆彩霞,代解杰. 诱导多能干细胞来源的肝细胞在HCV感染模型中的应用*[J]. 中国生物工程杂志, 2020, 40(11): 67-72.
[12] 朱永朝,陶金,任萌萌,熊燃,何亚琴,周瑜,卢震辉,杜勇,杨芝红. 自噬抑制肿瘤坏死因子α诱导人胎盘胎儿来源间充质干细胞发生凋亡 *[J]. 中国生物工程杂志, 2019, 39(9): 62-67.
[13] 李欣,赵中利,罗晓彤,曹阳,张立春,于永生,金海国. 诱导多能干细胞向雄性生殖细胞分化诱导物的研究进展 *[J]. 中国生物工程杂志, 2019, 39(4): 94-100.
[14] 范月蕾,陆娇,陈大明,毛开云. 干细胞专利价值评估与转移转化对策研究 *[J]. 中国生物工程杂志, 2019, 39(1): 99-106.
[15] 施文雯,张蕾. 力学微环境影响间充质干细胞分化的研究现状 *[J]. 中国生物工程杂志, 2018, 38(8): 76-83.