Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2010, Vol. 30 Issue (03): 52-55    
研究报告     
具超强富集U(Ⅵ)能力工程菌E.coli的构建
梁颂军,谢水波**,李仕友,唐东山,刘迎九,刘金香
南华大学污染控制与资源化技术湖南省重点实验室 衡阳 421001
Construction of Uranium-superaccumulating Engineered E.coli
Hunan Province Key Laboratory of Pollution Control and Resources Technology, University of South China, Hengyang 421001, China
 全文: PDF(485 KB)   HTML
摘要:

以鼠伤寒沙门氏菌基因组DNA为模板,PCR扩增得到非特异性酸性磷酸酶基因(phoN),将其克隆到pMD18T-Vector中。用Spe I、Nde I限制性内切酶对重组转移载体T-VectorphoN与穿梭载体pRADZ3分别进行双酶切,再将phoN片段和穿梭载体pRADZ3中的大片段通过T4DNA连接酶连接。经PCR与双酶切双重鉴定,证实重组穿梭载体pRADZ3phoN构建成功。转化Escherichia coli DH5α感受态细胞,使其在正常情况下表达PhoN蛋白,经Western blot 证实phoN基因在DH5α中成功表达。利用含pRADZ3phoN的工程菌进行富集U(Ⅵ)实验,结果表明该工程菌对U(Ⅵ)的富集量较宿主菌提高约4倍,达46.16mg/g,去除率为92.32%。

关键词: 生物富集非特异性酸性磷酸酶基因工程菌    
Abstract:

PhoN gene that was amplified from Salmonella enterica serovar Typhimurium genomic DNA by PCR, was cloned into pMD18 T-Vector. Recombined transfer vector T-VectorphoN was digested by restriction enzymes of Spe I and Nde I, and then the purified phoN gene was inserted into shuttle vector pRADZ3 which was digested by the same restriction enzymes. The recombined shuttle vector pRADZ3phoN was identified by PCR and restriction analysis, and transformed into E.coli DH5α competent cell. A recombinant fusion PhoN protein was expressed in normal growth condition without induction. The expression of PhoN protein in E.coli DH5α was confirmed by Western blot. The U(Ⅵ) bioaccumulation performance of engineered E.coli was evaluated. The results showed that the maximum U(Ⅵ) bioaccumulation capacity of engineered E. coli increased four times compared to original E. coli, reaching 46.16 mg/g, and the removal rate of U(Ⅵ) was 92.32%.

Key words: Bioaccumulation    PhoN gene    Engineered strain    Uranium
收稿日期: 2009-09-29 出版日期: 2010-03-25
基金资助:

国家自然科学基金项目(10775065,20707008)、湖南省高校创新平台开放基金项目(09K076)资助项目

通讯作者: 谢水波     E-mail: xiesbmr@263.net
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
梁颂军
谢水波
李仕友
唐东山
刘迎九
刘金香

引用本文:

梁颂军 谢水波 李仕友 唐东山 刘迎九 刘金香. 具超强富集U(Ⅵ)能力工程菌E.coli的构建[J]. 中国生物工程杂志, 2010, 30(03): 52-55.

LIANG Rong-Jun, XIE Shui-Bei, LI Shi-You, TANG Dong-Shan, LIU Ying-Jiu, LIU Jin-Xiang. Construction of Uranium-superaccumulating Engineered E.coli. China Biotechnology, 2010, 30(03): 52-55.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2010/V30/I03/52

[1] Wang J, Chen C. Biosorption of heavy metals by Saccharomyces cerevisiae: a review. Biotechnology Advances, 2006, 24(5): 427451. 
[2] Chen B, Jakobsen I, Roos P, et al. Effects of the mycorrhizal fungus Glomus intraradices on uranium uptake and accumulation by Medicago truncatula L. from uraniumcontaminated soil. Plant and Soil, 2005, 275(12): 349359. 
[3] 柏云, 张静, 冯易君. 生物吸附法处理含铀废水研究进展. 四川环境, 2003, 22(2): 913. Bo Y, Zhang J, Feng Y J. Sichuan Environment, 2003, 22(2):913. 
[4] Xie S B, Yang J, Chen C, et al. Study on biosorption kinetics and thermodynamics of uranium by Citrobacter freudii. Journal of Environmental Radioactivity, 2008, 99(1): 126133. 
[5] Nadia N N, Sherry L D, Lainie P, et al. Change in Bacterial Community Structure during In Situ Biostimulation of Subsurface Sediment Contaminated with Uranium and Nitrate. Applied and Environmental Microbiology, 2004, 70(8):49114920. 
[6] Holmes D E, Finneran K T, O’Neil R A, et al. Enrichment of Members of Family Geobacteraceae Associated with Stimulation of Dissimiatory Metal Reduction in UraniumContaminated Aquifer Sediments. Applied and Environmental Microbiology, 2002, 68(5):23002306. 
[7] Macaskie L E, Bonthrone K M, Rouch D A. Phosphatasemediated heavy metal accumulation by a Citrobacter sp. and related enterobacteria. FEMS Microbiology Letters, 1994, 121(2):141146. 
[8] Lynne E M, Karen M B, Ping Y, et al. Enzymically mediated bioprecipitation of uranium by a Citrobacter sp.: a concerted role for exocellular lipopolysaccharide and associated phosphatase in biomineral formation. Microbiology, 2000, 146(8): 18551867. 
[9] John A F, Victoria J M A, Alex C, et al. PhoNtype acid phosphatases of a heavy metalaccumulating Citrobacter sp.: resistance to heavy metals and affinity towards phosphomonoester substrates. FEMS Microbiology Letters, 1995, 130(23): 8797. 
[10] 萨姆布鲁克,拉塞尔. 分子克隆实验指南(第3版). 北京: 科学出版社, 2002. 14931495. Sambrook J, Russell D W. Molecular Cloning: A Laboratory Manual, 3rd ed. Beijing: Science Press, 2002. 14931495.

[1] 马宁,王汉杰. 光遗传学在细菌生产调控中的应用进展[J]. 中国生物工程杂志, 2021, 41(9): 101-109.
[2] 武婕, 张晓雪, 余河水, 李薇, 贾宇平, 郭江玉, 张丽娟, 宋新波. 毕赤酵母工程菌高密度发酵研究与进展[J]. 中国生物工程杂志, 2016, 36(1): 108-114.
[3] 赵莹, 刘津, 王长松, 赵广荣. 微生物合成黄酮类研究进展[J]. 中国生物工程杂志, 2014, 34(4): 110-117.
[4] 鲁泓鹰, 何虎, 刘枣, 王永泽, 王金华. 木糖发酵生产高纯度D-乳酸大肠杆菌工程菌LHY02的构建[J]. 中国生物工程杂志, 2014, 34(12): 91-96.
[5] 肖仕圆, 许敬亮, 陈小燕, 杨柳, 李谢昆, 袁振宏. 异戊醇生物合成研究进展[J]. 中国生物工程杂志, 2014, 34(12): 112-117.
[6] 赵玉清, 李晋, 周广麒, 任铮宇, 杨洪泽, 孙天竹, 邢艳杰. 一种嗜镍菌对含镍废水中Ni2+的特效吸附[J]. 中国生物工程杂志, 2012, 32(11): 92-97.
[7] 赵玉清, 李晋, 周广麒, 任铮宇, 杨洪泽, 孙天竹, 邢艳杰. 一种嗜镍菌对含镍废水中Ni2+的特效吸附[J]. 中国生物工程杂志, 2012, 32(11): 92-97.
[8] 陈晓静, 陈小梅, 王洋, 施慧莉, 霍克克. 人SCYL1-BP1重组蛋白的原核表达及分离纯化鉴定[J]. 中国生物工程杂志, 2012, 32(09): 1-8.
[9] 田平芳,曲凯,谭天伟. 链球菌生物合成透明质酸的分子机理与基因工程菌构建进展[J]. 中国生物工程杂志, 2008, 28(4): 98-102.
[10] 李晔,袁其朋. 产番茄红素基因工程菌的研究进展[J]. 中国生物工程杂志, 2006, 26(11): 81-86.
[11] 刘敏,李荣贵,杜桂彩,范海. 累积番茄红素的大肠杆菌工程菌及其培养条件的研究[J]. 中国生物工程杂志, 2006, 26(08): 47-51.
[12] 赵有玺,饶志明,沈微,方慧英. 产甘油假丝酵母产甘油关键酶基因在酿酒酵母中的表达[J]. 中国生物工程杂志, 2006, 26(01): 38-41.
[13] 刘莉, 吴襟, 陈炜, 张树政. 芝田硫化叶菌新型α-淀粉酶基因工程菌表达条件的优化[J]. 中国生物工程杂志, 2003, 23(1): 70-74.
[14] 郑文杰, 贺鸿志, 黄峙, 杨芳. 螺旋藻富集和转化硒研究进展[J]. 中国生物工程杂志, 2003, 23(1): 57-60.
[15] 李会成, 李文辉, 郭军, 刘利民. 基因工程菌的发酵研究[J]. 中国生物工程杂志, 1997, 17(2): 39-42.