Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2010, Vol. 30 Issue (01): 85-92    
综述     
巴西橡胶树转基因研究现状与展望
邹智**,杨礼富,王真辉,袁坤
中国热带农业科学院橡胶研究所 农业部橡胶树生物学重点开放实验室 儋州 571737
Advances and Perspectives on Genetic Modification of Hevea brasiliensis
ZOU Zhi,YANG Li-fu,WANG Zhen-hui,YUAN Kun
Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Rubber Biology,Ministry of Agriculture, Danzhou 57173,China
 全文: PDF(531 KB)   HTML
摘要:

由于存在遗传背景狭窄、高度杂合化、育种周期长等特点,巴西橡胶树育种进展非常缓慢。转基因技术为拓展其的遗传范围、加速育种进程提供了契机。在过去20年里,橡胶树转基因研究取得了很大进展:成功应用的转化技术包括基因枪法和农杆菌介导法,受体材料包括花药和内珠被愈伤,育种目标涉及到提高胶乳产量、抗死皮和作为生物反应器等。但同时也存在组培程序不够成熟、转化技术和外植体比较单一、转化效率低下等问题。最后,对以后转化体系的优化、转基因育种方向进行了分析和展望。

关键词: 橡胶树遗传转化农杆菌介导法基因枪转化法    
Abstract:

As the major commercial source of natural rubber, Hevea brasiliensis attracts much attention. However, the heterozygous nature, long breeding cycle are strong limitations for conventional breeding. While genetic engineering, which can be used to widen the germplasm base and produce desirable agronomic traits quickly and efficiently, offers a viable alternative approach to complement traditional breeding. Comprehensive analysis indicates that in the past two decades, with calli derived from immature anther or integumental tissues of immature fruit as receptors, both biolistic and Agrobacterium-mediated transformation methods were employed for developping rubber genotypes with improved latex yield, tolerance to tapping panel dryness syndrome, producing high-value recombinant proteins, etc. Being recalcitrant to tissue culture, the transformation efficiency of Hevea is comparatively low, and the procedures are still needed to optimize. Finally, breeding objectives and strategies to improve transformation efficiency were also proposed in the review.

Key words: Hevea brasiliensis    genetic modification    Agrobacterium-mediated transformation    Biolistic transformation
收稿日期: 2009-08-28 出版日期: 2010-01-27
基金资助:

中央级公益性科研院所基本科研业务费专项[XJSYWFZX200912、YWFZX0904(N)]、公益性行业科技专项经费(nyhyzx070331)资助项目

通讯作者: 邹智     E-mail: zouzhi2008@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
邹智
杨礼富
王真辉
袁坤

引用本文:

邹智 杨礼富 王真辉 袁坤. 巴西橡胶树转基因研究现状与展望[J]. 中国生物工程杂志, 2010, 30(01): 85-92.

JU Zhi, YANG Li-Fu, WANG Zhen-Hui, YUAN Kun. Advances and Perspectives on Genetic Modification of Hevea brasiliensis. China Biotechnology, 2010, 30(01): 85-92.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2010/V30/I01/85

[1] Kitayama M, Takahashi M, Surzycki S J, et al. Transformation of callus tissue from Hevea brasiliensis and Jasminium officinale.Plant Physiol(Suppl), 1990, 93: 46. 
[2] Arokiaraj P, Jones H, Cheong K F, et al. Gene Insertion into Hevea brasiliensis. Plant Cell Rep, 1994, 13: 425431. 
[3] Arokiaraj P,Wan Abdul Rahaman W Y. Agrobacteriummediated transformation of Hevea cells derived from in vitro and in vivo seedling cultures. J Nat Rubb Res, 1991, 6: 5561. 
[4] Arokiaraj P, Jones H, Jaafar H, et al. Agrobacteriummediated transformation of Hevea anther calli and their regeneration into plantlets. J Nat Rubber Res, 1996, 11(2): 7786. 
[5] Arokiaraj P, Yeang H Y, Cheong K F, et al. CaMV 35S promoter directs βglucuronidase expression in the laticiferous system of transgenic Hevea brasiliensis (rubber tree). Plant Cell Rep, 1998, 17: 621625. 
[6] Montoro P, Teinseree N, Rattana W, et al. Effect of exogenous calcium on Agrobacterium tumefaciensmediated gene transfer in Hevea brasiliensis (rubber tree) friable calli. Plant Cell Rep, 2000, 19: 851855. 
[7] 刘志昕,邓晓东,魏源文,等反义Hevein基因载体构建及橡胶树遗传转化研究初报热带作物学报(增刊),2000,12(21):102107. Liu Z X, Deng X D, Wei Y W, et al.Chinese J Tropical Crops, 2000, 12(21), 102107. 
[8] Rattana W, Teinseree N, Tadakittisarn S. Characterization of factors involved in tissue growth recovery and stability of GUS activity in rubber tree (Hevea brasiliensis) friable calli transformed by Agrobacterium tumefaciens. Thai J Agric Sci, 2001, 34: 34. 
[9] Arokiaraj P, Rueker F, Oberymayr E, et al. Expression of human serumal bumin in transgenic Hevea brasiliensis. J Rubber Res, 2002, 5: 157166. 
[10] Yeang H Y, Arokiaraj P, Hafsah J, et al. Expression of a functional recombinant antibody fragment in the latex of transgenic Hevea brasiliensis. J Rubber Res, 2002, 5: 215225. 
[11] Sobha S, Sushamakumari S, ThanseemI, et al. Genetic transformation of Hevea brasiliensis with the gene coding for superoxide dismutase with FMV 34S promoter. Curr Sci, 2003a, 85: 4552. 
[12] Sobha S, Sushamakumari S, Thanseem I , et al. Abiotic stress induced overexpression of superoxide dismutase enzyme in transgenic Hevea brasiliensis. Indian J Nat Rubber Res, 2003b, 16: 4552.
[13] Montoro P, Rattana W, PujadeRenaud V, et al. Production of Hevea brasiliensis transgenic embryogenic callus lines by Agrobacterium tumefaciens: roles of calcium. Plant Cell Rep, 2003, 21: 10951102. 
[14] Jayashree R, Rekha K, Venkatachalam P, et al. Genetic transformation and regeneration of rubber tree (Hevea brasiliensis Muell Arg) transgenic plants with a constitutive version of an antioxidative stress superoxide dismutase gene. Plant Cell Rep, 2003, 22: 201209. 
[15] Blanc G, Baptiste C, Oliver G, et al. Efficient Agrobacterium tumefaciensmediated transformation of embryogenic calli and regeneration of Hevea brasiliensis Mull Arg. plants. Plant Cell Rep, 2006, 24: 724733. 
[16] Rekha K, Jayashree R, Kumary Jayasree P, et al. An efficient protocol for Agrobacteriummediated genetic transformation in rubber tree (Hevea brasiliensis). Plant Cell Biotechno and Mol Biol, 2006, 7: 155158. 
[17] 王颖,陈雄庭,张秀娟,等基因枪法将GAI基因导入巴西橡胶的研究热带亚热带植物学报,2006,14(3):179182. Wang Y, Chen X T, Zhang X J, et al.J Tropical Subtropical Bot, 2006, l4(3): 179182. 
[18] Montoro P, Lagier S, Baptiste C, et al. Expression of the HEV2.1 gene promoter in transgenic Hevea brasiliensis. Plant Cell Tiss Organ Cult, 2008, 94(1): 5563. 
[19] 孙爱花,李哲,黄天带.橡胶树药的培养植物生理学通讯,2006,42(4):785789 Sun A H, Li Z, Huang T D.Plant Physiol Com, 2006, 42(4): 785789. 
[20] 黄德贵,陈曼雅,吕美娜,等巴西橡胶花药培养的研究福建热带科技,1982(2):111. Huang D G, Chen M Y, Lv M N, et al.Fujian Sci and Techno Tropical Crops, 1982(2): 111. 
[21] Kumari J P, Asokan M P, Sobha S, et al. Somatic embryogenesis and plant regeneration form immature anthers of Hevea brasiliensis (Muell. Arg.). Curr Sci, 1999, 76: 12421245. 
[22] Kumari J P, Thulaseedharan A. Gibberllic acid regulated embryo induction and germination in Hevea brasiliensis (Muell. Arg.). Indian J Nat Rubber Res, 2001, 14: 106111. 
[23] Kumari J P, Vinoth T. Optimization of parameters affecting somatic embryogenesis in Hevea brasiliensis. Indian J Nat Rubber Res, 2001,14: 2029. 
[24] Carron M P, Enjalric E. Somatic embryogenesis from inner integument of the seed of Hevea brasiliensis (Muell. Arg.). Comptes Rendus de L'Academic des Sciences, Paris Series III, 1985, 300: 653658. 
[25] Blanc G, Lardet L, Martin A. Differential carbohydrate metabolism conducts morphogenesis in embryogenic callus of Hevea brasiliensis. J Exp Bot, 2002, 53(373): 14531462. 
[26] EI Hadrami I, Carron M P, d’Auzac J. Influence of exogenous hormone on somatic embryogenesis in Hevea brasiliensis. Ann Bot, 1991, 67: 511515. 
[27] Etienne H, Berger A, Carron M P. Water status of callus from Hevea brasiliensis during induction of somatic embryogenesis. Physiol Plantarum, 1991, 82: 213218. 
[28] Montoro P, Etienne H, Carron M P. Effect of calcium on callus friability and somatic embryogenesis in Hevea brasiliensis Mull. Arg. Relations with callus mineral nutrition, nitrogen metabolism and water parameters. J Exp Bot, 1995, 46: 255261. 
[29] Etienne H, Montoro P, MichauxFerriere N, et al. Effects of desiccation, medium osmolarity and abscisic acid on the maturation of Hevea brasiliensis somatic embryos. J Exp Bot, 1993a, 44: 16131619. 
[30] Etienne H, Sotta B, Montoro P. Relationship between exogenous growth regulators and endogeous indole3aectic acid and abscisic acid in the expression of somatic embryogenesis in Hevea brasiliensis (Muell. Arg.). Plant Sci, 1993b, 88: 9196. 
[31] Etienne H, Lartaud M, MichauxFerriere N, et al. Improvement of somatic embryogenesis in Hevea brasiliensis (Muell. Arg.) using temporary immersion technique. In Vitro Cell DevPl, 1997a, 33: 8187. 
[32] Etienne H, Lartaud M, Carron M P, et al. Use of calcium to optimize long term proliferation of friable calluses and plant regeneration in Hevea brasiliensis (Muell. Arg.). J Exp Bot, 1997b, 48: 129137. 
[33] Veisseire P, Cailloux F,Coudret A. Effect of conditioned media on the somatic embrogenesis of Hevea brasiliensis. Plant Physiol Bioch, 1994a, 32: 571576. 
[34] Veisseire P, Linossier L, Coudret A. Effect of absicsic acid and cytokinins on the development of somatic embryos in Hevea brasiliensis. Plant Cell Tiss Organ Cult, 1994b, 39: 219223. 
[35] Lardet L, Martin F, Dessailly F, et al. Effect of exogenous calcium on postthaw growth recovery and subsequent plant regeneration of cryopreserved embryogenic calli of Hevea brasiliensis (Mull. Arg.). Plant Cell Rep, 2007, 26: 559569. 
[36] EI Hadrami I, d’Auzac J. Effects of polyamine biosynthetic inhibitors on somatic embryogenesis and cellular polyamines in Hevea brasiliensis. J Plant Physiol,1992, 140: 3336. 
[37] Linossier L, Veisseire P, Cailloux. Effect of abscisic acid and high concentrations of PEG on Hevea brasiliensis somatic embryos development. Plant Sci, 1997, 124: 183191. 
[38] 邹智,杨礼富,王真辉,等橡胶树中橡胶的生物合成与调控植物生理学通讯,2009,45(12):12311238. Zou Z,Yang L F,Wang Z H,et al.Plant Physiol Com, 2009,45(12):12311238. 
[39] Wititsuwannakul R. Diurnal variation of 3hydroxy3methylglutaryl coenzyme A reductase activity in latex of H. brasiliensis and its relation to rubber content. Experientia,1986,42, 4445. 
[40] Arokiaraj P. Towards molecular genetic improvement of rubber yield in transgenic Hevea brasiliensis Muell Arg. PhD Thesis,1995. England: University of London. pp:102126. 
[41] Ko J H, Chow K S, Han K H. Transcriptome analysis reveals novel features of the molecular events occurring in the laticifers of Hevea brasiliensis (Para rubber tree). Plant Mol Bio, 2003, 53: 479492. 
[42] Priya P, Venkatachalam P, Thulaseedharan A. Molecular cloning and characterization of the rubber elongation factor gene and its promoter sequence from rubber tree (Hevea brasiliensis), A gene involved in rubber biosynthesis. Plant Sci, 2006, 171: 470480. 
[43] Hao B Z, Wu J L. Laticifer differentiation in Hevea brasiliensis, induction by exogenous jasmonic acid and linolenic acid. Ann Bot, 2000, 85: 3747.

[1] 何伟,祝蕾,刘欣泽,安学丽,万向元. 玉米遗传转化与商业化转基因玉米开发*[J]. 中国生物工程杂志, 2021, 41(12): 13-23.
[2] 安婷,季静,王昱蓉,马志刚,王罡,李倩,杨丹,张松皓. 百合鳞片的诱导分化及遗传转化效率分析[J]. 中国生物工程杂志, 2018, 38(1): 25-31.
[3] 夏惠, 刘磊, 王秀, 沈妍秋, 郭雨伦, 梁东. 苹果6-磷酸山梨醇脱氢酶基因启动子逆境诱导表达特性研究[J]. 中国生物工程杂志, 2017, 37(6): 50-55.
[4] 朱雪瑞, 季静, 王罡, 马志刚, 杨丹, 金超, 李辰. 马铃薯不同组织的诱导分化及其对遗传转化效率的影响[J]. 中国生物工程杂志, 2016, 36(10): 53-59.
[5] 周于聪, 谢秋瑾, 宋凯, 杨朝晖, 陈捷, 李雅乾. 改良ATMT转化技术在深绿木霉基因敲除中的应用[J]. 中国生物工程杂志, 2015, 35(12): 58-64.
[6] 秦翠鲜, 陈忠良, 桂意云, 汪淼, 周建辉, 廖青, 李杨瑞, 黄东亮. 农杆菌介导甘蔗愈伤组织遗传转化体系的优化[J]. 中国生物工程杂志, 2013, 33(9): 66-72.
[7] 朱彩虹, 李水根, 齐力旺, 韩素英. 农杆菌介导的日本落叶松胚性细胞遗传转化研究[J]. 中国生物工程杂志, 2013, 33(5): 75-80.
[8] 李美玉, 李锐, 于敏, 王胜华, 陈放. 根癌农杆菌介导的金发草遗传转化条件的优化[J]. 中国生物工程杂志, 2013, 33(1): 41-46.
[9] 汪婷婷, 季静, 王罡, 关春峰, 张烈, 金超. 农杆菌侵染玉米芽尖导入psy基因的研究[J]. 中国生物工程杂志, 2012, 32(08): 36-40.
[10] 霍培, 季静, 王罡, 关春峰, 金超. 番茄红素β-环化酶基因的玉米转化及 后代遗传分析[J]. 中国生物工程杂志, 2012, 32(07): 43-48.
[11] 李淑洁, 李静雯, 张正英. 农杆菌介导的半夏凝集素基因(Pinellia Ternate Agglutinin Gene,pta)对小麦的遗传转化及鉴定[J]. 中国生物工程杂志, 2012, 32(02): 50-56.
[12] 汪运洋, 王春梅, 陈琛, 施定基. 模式生物小立碗藓遗传转化系统的研究进展[J]. 中国生物工程杂志, 2012, 32(01): 103-108.
[13] 侯春喜 赵寿经 梁彦龙 王建华. 人参遗传转化研究进展[J]. 中国生物工程杂志, 2009, 29(09): 0-0.
[14] 赵华 赵进 董银卯 何聪芬 钟秦. 转TaDREB基因提高芦荟抗低温特性的研究[J]. 中国生物工程杂志, 2009, 29(09): 0-0.
[15] 闫洁,陈守才,夏志辉. 橡胶树死皮病胶乳C-乳清差异表达蛋白质的筛选与鉴定[J]. 中国生物工程杂志, 2008, 28(6): 28-36.