Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2010, Vol. 30 Issue (01): 62-66    
研究报告     
流加发酵对重组Bacillus subtilis发酵生产角质酶的影响
陈晟1,2,张芙华1,2,陈坚1,2,吴敬1,2**
1.江南大学生物工程学院 工业生物技术教育部重点实验室 无锡 214122
2.江南大学食品科学与技术国家重点实验室 无锡 214122
Effects of Fed-fermentation on Cutinase Production by Recombinant Bacillus subtilis
CHEN Sheng1,2,ZHANG Fu-hua1,2,CHEN Jian1,2,WU Jing1,2
1.School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
2.State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
 全文: PDF(702 KB)   HTML
摘要:

为实现基因工程菌Bacillus subtilis WSHB06-07生产角质酶的高产,在3L发酵罐中考察了不同初糖浓度对菌体生长和产酶的影响,并在选择38 g/L初始蔗糖浓度的基础上,进行碳源的分批流加和恒速流加,结果表明发酵16 h开始流加碳源,采用总补糖量60g/L,蔗糖平均流速为4g/(L·h)的恒速补料方式,角质酶酶活在31h可达到最大545.87U/ml,比分批发酵酶活提高67.8%,并获得较高的角质酶生产强度,满足工业化生产要求。

关键词: Bacillus subtilis重组角质酶分批流加发酵连续流加发酵碳源生产强度    
Abstract:

In order to achieve the high production of cutinase by recombinant Bacillus subtilis WSHB06-07, the effect of various initial sucrose concentration on enzyme production was investigated in 3 L fermentor. It was found that sucrose concentration of 38 g/L is suitable for cell growth and cutinase production. Based on this sucrose concentration, fedbatch as well as constant-fed fermentation were investigated. The results showed that, using constant-fed fermentation from 16 h to 31 h and sucrose feed rate of 4 g/(L·h), the cutinase activity in the culture media reached 545.87U/ml, which was increased by 67.8% compared to that of batch fermentation. By this way, high cutinase productivity was gained and it is beneficial for industrial production.

Key words: Bacillus subtilis    recombinant cutinase    fed-batch fermentation    constant-fed fermentation    carbon source    cutinase productivity
收稿日期: 2009-09-01 出版日期: 2010-01-27
基金资助:

国家“863”计划(2009AA02Z204)、教育部新世纪优秀人才支持计划(NCET-06-0486)、食品科学与技术国家重点实验室科研基金(SKLF-MB-200802)资助项目

通讯作者: 吴敬     E-mail: jingwu@jiangnan.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
陈晟
张芙华
陈坚
吴敬

引用本文:

陈晟 张芙华 陈坚 吴敬. 流加发酵对重组Bacillus subtilis发酵生产角质酶的影响[J]. 中国生物工程杂志, 2010, 30(01): 62-66.

CHEN Cheng, ZHANG Fu-Hua, CHEN Jian, TUN Jing. Effects of Fed-fermentation on Cutinase Production by Recombinant Bacillus subtilis. China Biotechnology, 2010, 30(01): 62-66.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2010/V30/I01/62

[1] Egmond M R, de Vlieg J. Fusarium solani pisi cutinase. Biochimie, 2000, 82(11):10151021. 
[2] Mannesse M L M, Cox R C, Koops B C,et al.Cutinase from Fusarium solani pisi hydrolyzing triglyceride analogues. Effect of acyl chain length and position in the substrate molecule on activity and enantioselectivity. Biochemistry, 1995, 34(1):64006407. 
[3] Alisch M M, Herrmann A, Zimmermann W. Increase of the hydrophilicity of polyethylene terephthalate fibres by hydrolases from Thermomonospora fusca and Fusarium solani f. sp. pisi. Biotechnol Lett, 2006, 28(10):681685. 
[4] Degani O, Gepstein S, Dosoretz C G. Potential use of cutinase in enzymatic scouring of cotton fiber cuticle. Appl Biochem Biotechnol, 2002, 102103(16):277289. 
[5] Vertommen M A, Nierstrasz V A, Veer M,et al. Enzymatic surface modification of poly(ethylene terephthalate). J Biotechnol, 2005, 120(4):376386. 
[6] Longhi S, Nicolas A, Creveld L,et al. Dynamics of Fusarium solani cutinase investigated through structural comparison among different crystal forms of its variants. Proteins, 1996, 26(4):442458. 
[7] Wang G Y, Michailides T J, Hammock B D,et al. Molecular cloning, characterization, and expression of a redoxresponsive cutinase from Monilinia fructicola (Wint.) Honey. Fungal Genet Biol, 2002, 35(3):261276. 
[8] Fett W F, Gerard H C, Moreau R A,et al. Cutinase production by Streptomycs sp. Curr Microbiol, 1992, 25(1):165171. 
[9] Calado C R, Almeida C, Cabral J M,et al. Development of a fedbatch cultivation strategy for the enhanced production and secretion of cutinase by a recombinant Saccharomyces cerevisiae SU50 strain. J Biosci Bioeng, 2003, 96(2):141148. 
[10] Pio T F, Macedo G A. Cutinase production by Fusarium oxysporum in liquid medium using central composite design. J Ind Microbiol Biotechnol, 2008, 35(1):5967. 
[11] 张芙华, 陈晟, 张东旭, 等. pH两阶段控制策略发酵生产重组角质酶. 中国生物工程杂志, 2008, 28(5): 5964. Zhang F H, Chen S, Zhang D X,et al.China Biotechnology, 2008, 28(5):5964. 
[12] Ferreira B S, Calado C R, Van Keulen F. Towards a cost effective strategy for cutinase production by a recombinant Saccharomyces cerevisiae: strain physiological aspects. Appl Microbiol Biotechnol, 2003, 61(1):6976. 
[13] Ning S A. The effect of carbon dioxide gas on the growth of Candida utilis yeasts during continuous cultivation chemostat. Mikrobiologiia, 1976, 45(1): 6772.

[1] 夏烨, 黄惟巍, 杨旭, 孙鹏艳, 姚月婷, 王世杰, 刘存宝, 孙文佳, 白红妹, 姚宇峰, 马雁冰. 利用不同碳源进行毕赤酵母高密度发酵及TEF-1启动子指导下的HPV16_L1蛋白表达[J]. 中国生物工程杂志, 2015, 35(10): 39-43.
[2] 黄力, 贺赐安, 赵鹏, 余旭亚. 碳源、氮源对异养单针藻Monoraphidium sp. FXY-10油脂积累和脂肪酸组成的影响[J]. 中国生物工程杂志, 2013, 33(2): 59-64.
[3] 尚洁, 吴秋霞, 练小龙, 王秋玉. 碳源和氮源对木蹄层孔菌产漆酶的影响及酶学性质研究[J]. 中国生物工程杂志, 2013, 33(11): 32-37.
[4] 赵朋超, 权春善, 金黎明, 王丽娜, 范圣第. 氮源和碳源对解淀粉芽孢杆菌Q-426抗菌脂肽合成的影响[J]. 中国生物工程杂志, 2012, 32(10): 50-56.
[5] 田小梅, 任建洪, 房聪. 不同碳源下毕赤酵母GS115蛋白组学分析[J]. 中国生物工程杂志, 2012, 32(01): 21-29.
[6] 王益娜,马江锋,陈可泉,左鹏,吴晓花,姜岷. 碳源对重组大肠杆菌两阶段发酵产丁二酸的影响[J]. 中国生物工程杂志, 2009, 29(03): 57-62.
[7] 张芙华,陈晟,张东旭,华兆哲,陈坚,吴敬. pH两阶段控制策略发酵生产重组角质酶[J]. 中国生物工程杂志, 2008, 28(5): 59-64.
[8] 苗茂栋,吴敏,邵千飞,马全红,蒋知欲. 利用克雷伯肺炎杆菌限制性底物发酵生产1,3-丙二醇[J]. 中国生物工程杂志, 2008, 28(10): 49-54.
[9] 柯为据. 消除有毒废物的“工程菌”[J]. 中国生物工程杂志, 1984, 4(1): 87-88.