Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2009, Vol. 29 Issue (12): 74-78    
技术与方法     
通过断裂内含肽介导的反式剪接合成大的蛋白
张静,刘环,周晶,刘建华**
上海交通大学生命科学技术学院 上海 200240
Large Protein Production Through Split Intein-Mediated Trans-Splicing
ZHANG Jing,LIU Huan,ZHOU Jing,LIU Jian-hua
College of Life Science & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240,China
 全文: PDF(519 KB)   HTML
摘要:

大肠杆菌难以表达大的蛋白,毒性蛋白以及膜蛋白,“Npu DnaE内含肽表达系统“使这些蛋白的表达成为可能。该系统的基本原理是:在特定位点处将目标基因(编码T7 RNA聚合酶的基因)断裂成两部分,然后分别与Npu DnaE内含肽的N端,C端片段融合,两种融合基因分别表达纯化,在体外将两种融合蛋白等摩尔比混合即可产生有功能的T7 RNA聚合酶。理论上,该体系也可用于合成其他大的蛋白,毒性蛋白或膜蛋白。

关键词: 大的蛋白毒性蛋白膜蛋白Npu DnaE内含肽T7 RNA聚合酶    
Abstract:

Npu DnaE intein was used to produce some large proteins, which were difficult to obtain through conventional expression systems. A T7 expression system was described, by which the gene of T7 RNA polymerase is split into two pieces, and each piece fuses with Npu DnaE N and C terminal sequences respectively. Functional T7 RNA polymerase is created by mixing the two kinds of fusion constructs in vitro.The approach of split inteinmediated production of large proteins, in theory, readily generalizable to the purification of other large, cytotoxic or membrane proteins. 

Key words: Large cytotoxic or membrane proteins    Npu DnaE intein    T7 RNA polymerase
收稿日期: 2009-09-09 出版日期: 2009-12-21
ZTFLH:  Q819  
基金资助:

国家“973”计划子课题(2007CB914500)资助项目

通讯作者: 刘建华     E-mail: jianhualiudl@sjtu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张静
刘环
周晶
刘建华

引用本文:

张静 刘环 周晶 刘建华. 通过断裂内含肽介导的反式剪接合成大的蛋白[J]. 中国生物工程杂志, 2009, 29(12): 74-78.

ZHANG Jing, LIU Huan, ZHOU Jing, LIU Jian-Hua. Large Protein Production Through Split Intein-Mediated Trans-Splicing. China Biotechnology, 2009, 29(12): 74-78.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2009/V29/I12/74

[1] Perler F B. InBase, the Intein Database. Nucleic Acids Res, 2000,28:344~345
[2] Southworth M W, Adam E, Panne D,et al. Control of protein splicing by intein fragment reassembly. EMBO J, 1998,17: 918~926
[3] Mills K V, Lew B M, Jiang S Q, et al. Protein splicing in trans by purified N and Cterminal fragments of the Mycobacterium tuberculosis RecA intein. Proc Natl Acad Sci USA, 1998, 95: 3543~3548
[4] Wu H, Xu M Q, Liu X Q. Protein transsplicing and functional miniinteins of a cyanobacterial DnaB intein. Biochim Biophys Acta, 1998,1387: 422~432
[5] Yamazaki T, Otomo T, Oda N, et al. Segmental isotope labeling for protein NMR using peptide splicing. J Am Chem Soc,1998,120:5591~5592
[6] Lew B W, Mills K V, Paulus H. Protein splicing in vitro with a semisynthetic twocomponent minimal intein. J Biol Chem,1998,273:15887~15890
[7] Scott C P, AbelSantos E, Wall M, et al. Production of cyclic peptides and proteins in vivo. Proc Natl Acad Sci USA, 1999, 96: 13638~13643
[8] Evans T C, Martin D, Kolly R, et al. Protein transsplicing and cyclization by a naturally split intein from the dnaE gene of Synechocystis species PCC6803. J Biol Che, 2000, 275:9091~9094
[9] Iwai H, Lingel A, Plückthun A. Cyclic green fluorescent protein produced in vivo using an artificially split PIPfuI intein from Pyrococcus furiosus. J Biol Chem, 2001, 276: 16548~16554
[10] Mootz H D, Tyszkiewicz A B, Muir T W. Conditional protein splicing: a new tool to control protein structure and function in vitro and in vivo. J Am Chem Soc, 2003, 125: 10561~10569
[11] Buskirk A R, Ong Y C, Gartner Z J, et al. Directed evolution of ligand dependence: smallmoleculeactivated protein splicing. Proc Natl Acad Sci USA, 2004, 101:10505~10510
[12] Ozawa T, Kaihara A, Sato M, et al. Split luciferase as an optical probe for detecting protein-protein interactions in mammalian cells based on protein splicing. Anal Chem, 2001, 73: 2516~2521
[13] Chin H G, Kim G D, Marin I, et al. Protein transsplicing in transgenic plant chloroplast: reconstruction of herbicide resistance from split genes. Proc Natl Acad Sci USA, 2003, 100: 4510~4515
[14] Li J. Protein transsplicing as a means for viral vectormediated in vivo gene therapy. Human Gene Therapy, 2008, 19: 958~964
[15] Zettler J, Schütz V. The naturally split Npu DnaE intein exhibits an extraordinarily high rate in the protein transsplicing reaction. FEBS Letters, 2009, 583: 909~914
[16] Mills K V, Lew B W, Jiang S, et al. Protein splicing in trans by purified N and Cterminal fragments of the Mycobacterium tuberculosis RecA intein. Proc Natl Acad Sci USA, 1998, 95: 3543~3548
[1] 王艳红,刘艳双,石德喜,朱保国,吕保磊,付诗雨,徐苗,王伟,殷奎德. 新型YdjM超家族成员的钠/氢逆向转运蛋白功能鉴定 *[J]. 中国生物工程杂志, 2018, 38(12): 32-40.
[2] 轩换玲, 李静, 罗锋, 代先祝. 耐冷希瓦氏菌外膜蛋白的体外折叠研究[J]. 中国生物工程杂志, 2016, 36(3): 61-67.
[3] 李晨, 顾华, 郭佳, 孙慧, 黄经纬, 蒋明, 靳令经, 房健民. Tat-MANF融合蛋白的制备及生物活性研究[J]. 中国生物工程杂志, 2014, 34(06): 7-15.
[4] 董香梅, 孙吉昌, 刘春梅, 钟子清, 赖卫华, 魏华, 熊勇华. 单核细胞增生李斯特菌单克隆抗体的制备与鉴定[J]. 中国生物工程杂志, 2013, 33(5): 56-61.
[5] 冯书营, 景爱华, 杨建英. 白斑综合征病毒囊膜蛋白在对虾免疫保护应用中的研究进展[J]. 中国生物工程杂志, 2011, 31(8): 133-138.
[6] 潘小霞 张顺 袁静 文喻玲 陈元鼎. 痘苗病毒/T7 RNA聚合酶辅助的原核基因在真核细胞中的表达[J]. 中国生物工程杂志, 2011, 31(05): 0-0.
[7] 李江姣, 朱武洋, 何英, 梁国栋. 辛德毕斯病毒E2包膜蛋白可溶性表达条件的优化[J]. 中国生物工程杂志, 2011, 31(02): 62-68.
[8] 张江巍,陈尚武,马会勤. 植物膜蛋白质组学研究技术现状[J]. 中国生物工程杂志, 2007, 27(5): 131-136.
[9] 张领兵,伦艳妮,于乐洋,闫东梅,马威,杜柏榕,朱迅. SDS-聚丙烯酰氨凝胶电泳与液质联用技术分离和鉴定小鼠巨噬细胞膜蛋白[J]. 中国生物工程杂志, 2007, 27(4): 77-82.
[10] ,刘志华,杨谦,杨力明. 球毛壳菌(Chaetomium globosum)过氧化物膜蛋白过敏原基因克隆、序列分析及原核表达[J]. 中国生物工程杂志, 2006, 26(04): 40-45.
[11] 张雪花, 张惟杰. 被膜蛋白糖基化在HIV感染中的作用[J]. 中国生物工程杂志, 2003, 23(2): 7-11.
[12] 郭丽华. 分泌胃酸的质子泵克隆化[J]. 中国生物工程杂志, 1990, 10(3): 60-60.