Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2009, Vol. 29 Issue (12): 114-118    
综述     
Tn5转座突变技术在革兰氏阴性细菌分子遗传研究中的应用
年洪娟**,陈丽梅,李昆志
昆明理工大学生物工程技术研究中心 昆明 650224
Application of Tn5 Transposon Mutagenesis Technology in Molecular and Genetic Researches of Gramnegative Bacteria
NIAN Hong-juan,CHEN Li-mei,LI Kun-zhi
Biotechnology Research Center, Kunming University of Science and Technology,Kunming 650224,China
 全文: PDF(444 KB)   HTML
摘要:

随着广宿主载体系统的发展,Tn5及其衍生载体已经广泛应用于革兰氏阴性细菌的分子遗传学研究。主要综述了Tn5转座突变技术在生防细菌生防机理研究、细菌必需基因的鉴定、病原细菌毒力相关基因研究、代谢调控基因研究和菌株的遗传改良方面的应用研究进展。

关键词: Tn5转座突变生防机理必需基因细菌毒力基因代谢调控基因菌株遗传改良    
Abstract:

With development of wide-host-range vector systems, Tn5 transposon and its derivative vectors have been widely applied to genetic research of gram-negative bacteria.The applications of Tn5 transposon mutagenesis technology to genetic researches of bacteria were briefly discussed, including researches on biological control mechanisms of biocontrol bacteria, identification of bacterial essential genes, discovering virulence genes of bacterial pathogens, characterization of metabolism regulatory genes and genetic improvements of bacteria.

Key words: Tn5 transposon mutagenesis    Biocontrol mechanism    Bacterial essential geneVirulence gene    Metabolism regulatory gene    Bacteria improvements
收稿日期: 2009-05-06 出版日期: 2009-12-21
ZTFLH:  Q819  
基金资助:

云南省应用基础研究基金(2009ZCO14X)、云南省教育厅科学研究基金(09C0106)资助项目

通讯作者: 年洪娟     E-mail: hjnian@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
年洪娟
陈丽梅
李昆志

引用本文:

年洪娟 陈丽梅 李昆志. Tn5转座突变技术在革兰氏阴性细菌分子遗传研究中的应用[J]. 中国生物工程杂志, 2009, 29(12): 114-118.

NIAN Hong-Juan, CHEN Li-Mei, LI Hun-Zhi. Application of Tn5 Transposon Mutagenesis Technology in Molecular and Genetic Researches of Gramnegative Bacteria. China Biotechnology, 2009, 29(12): 114-118.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2009/V29/I12/114

[1] 唐江涛, 何勇强, 唐纪良. 细菌转座子Tn5转座机理的研究进展. 广西农业生物科学, 2003, 22(4): 316~321 Tang J T, He Y Q, Tang J L. Journal of Guangxi Agricultural and Biological Science, 2003, 22(4): 316~321
[2] Pierson III L S, Thomashow L S. Cloning and heterologous expression of the phenazine biosynthetic locus from Pseudomonas aureofaciens 3084. Mol PlantMicrobe Interact, 1992, 5: 330~339
[3] Philip E H, Steven H, Stephen T L, et al. Four genes from Pseudomonas fluorescens that encode the biosynthesis of Pyrrolnitrin. Appl Environ Microbiol, 1997, 63: 2147~2154
[4] Christine B, Sandra M, Theresa P, et al. Impact of mutations in hemA and hemH gene on pyoverdine production by Pseudomonas fluorescens ATCC17400. FEMS Microbiol Lett, 2001, 205: 57~63
[5] MarekKozaczuk M, Rogalski J, Skorupska A. The nadA gene of Pseudomonas fluorescens PGPR strain 267.1. Curr Microbiol, 2005, 51(2): 122~126
[6] Donald Y K, Ralph M R, Jeffrey D P, et al. A clp gene homologue belonging to the Cr Pgene family globally regulates lytic enzyme production, antimicrobial activity, and biological control activity expressed by Lysobacter enzymogenes strain C3. Appl Environ Microbiol, 2005, 71: 261~269
[7] Hongjuan Nian, Jie Zhang, Fuping Song, et al. Isolation of transposon mutants and characterization of genes involved in biofilm formation by Pseudomonas fluorescens. Arch Microbiol, 2007, 188(3): 205~213
[8] Judson N, Mekalanos J J.TnAraOut, a transposonbased approach to identify and characterize essential bacterial genes. Nat Biotechnol, 2000, 18:740~745
[9] PGordon B, Paul D H, Tim C E, et al. Evidence and characterization of a gene cluster required for the production of viscosin, a lipopeptide biosurfactant, by a strain of Pseudomonas fluorescens. Can J Microbiol, 2001, 47: 294~301
[10] Park Y J, Song E S, Kim Y T, et al. Analysis of virulence and growth of a purine auxotrophic mutant of Xanthomonas oryzae pathovar oryzae. FEMS Microbiol Lett, 2007, 276(1):55~59
[11] Mellgren E M, Kloek A P, Kunkel B N. Mqo, a tricarboxylic acid cycle enzyme, is required for virulence of Pseudomonas syringae pv. tomato strain DC3000 on Arabidopsis thaliana.J Bacteriol, 2009, 191(9):3132~3141
[12] Goldman B S, Kranz R G. ABC transporters associated with cytochrome c biogenesis. Res Microbiol, 2001,152: 323~329
[13] Wu Q, Pei J, Turse C, et al. Mariner mutagenesis of Brucella melitensis reveals genes with previously uncharacterized roles in virulence and survival. BMC Microbiol, 2006,18(6):102
[14] Antje K, Paul V, Claudia W, et al. The ssu locus plays a key role in organosulfur metabolism in Pseudomonas putida S313. J Bacteriol, 2000, 182: 2869~2878
[15] Takayukl E, Hiroshi H, Hideaki N, et al. The δ54dependent transcriptional activator SfnR regulates the expression of the Pseudomonas putida sfnFG operon responsible for dimethyl sulphone utilization. Mol Microbiol, 2005, 55: 897~911
[16] Leo B, Aldo A, Michael H R, et al. Inactivation of gltB abolishes expression of the assimilatory nitrate reductase gene(nasB)in Pseudomonas putida KT2442. J Bacteriol, 2000, 182: 3368~3376
[17] Manuel E U, JuanLuis R. Expression of a Pseudomonas putida aminotransferase involved in lysine catabolish is induced in the rhizosphere. Appl Environ Microbiol, 2001, 67: 5219~5224
[18] Jasper K, Riekje B, Ineke K G, et al. Transposon mutation in the flagella biosynthetic pathway of the solventtolerant Pseudomonas putida S12 result in a decreased expression of solvent efflux genes. FEMS Microbiol Lett, 2001, 198: 117~122
[19] Goff M, NikodinovicRunic J, O'Connor K E. Characterization of temperaturesensitive and lipopolysaccharide overproducing transposon mutants of Pseudomonas putida CA3 affected in PHA accumulation. FEMS Microbiol Lett, 2009, 292(2):297~305
[20] 张杰, 彭于发, 赵建周,等. 用接合转移方法构建杀虫防病荧光假单胞菌. 农业生物技术学报, 1995, 3(2):75~81 Zhang J, Peng Y F, Zhao J Z, et al. Journal of Agricultural Biotechnology, 1995, 3(2):75~81
[21] 唐朝荣, 孙福在, 赵廷昌. 利用细菌冰核基因构建促冻杀虫基因工程菌. 科学通报, 2003, 48: 64~69 Tang C R, Sun F Z, Zhao T C. Chinese Science Bulletin, 2003, 48: 64~69
[22] 周洪友, 魏海雷, 刘西莉,等. 通过染色体整合抗生素2,4二乙酰基间苯三酚合成基因提高荧光假单胞菌生防能力. 科学通报, 2005, 50: 766~771 Zhou H Y, Wei H L, Liu X L, et al. Chinese Science Bulletin, 2005, 50: 766~771
[23] Wu J, Xu J, Hong Q,et al. Construction of a genetically engineered and stable strain of degrading gammahexachlorocyclohexane and carbendazim by transposon miniTn5.Acta Microbiologica Sinica, 2008, 48(1):45~50
[1] 冯宝琪,冯娇,张苗,刘洋,曹睿,尹涵之,齐凤仙,李子龙,尹守亮. 利用Tn5型转座突变系统筛选高产阿维菌素菌株*[J]. 中国生物工程杂志, 2021, 41(7): 32-41.
[2] 李开秀,司维. 间充质干细胞来源的外泌体治疗炎症性肠病研究进展*[J]. 中国生物工程杂志, 2021, 41(7): 66-73.