Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2009, Vol. 29 Issue (12): 100-107    
综述     
新型白化型除草剂靶标酶对羟苯基丙酮酸双加氧酶及其耐性转基因植物研究进展*
梁玉玲1**,于静娟2
1.河北大学生命科学学院 保定 071002
2.中国农业大学农业生物技术国家重点实验室 北京 100094
Advances in a New Target for Bleaching-herbicide ρ-hydroxyphenylpyruvate Dioxygenase and Herbicide-resistant Transgenic Plants
LIANG Yu-ling1,YU Jing-juan2
1.College of Life Sciences,Hebei University,Baoding 071002,China
2.State Key Laboratory of Agrobiotechnology,China Agricultural University,Beijing 100094,China
 全文: PDF(1401 KB)   HTML
摘要:

对羟苯基丙酮酸双加氧酶(ρ-hydroxyphenylpyruvate dioxygenase,HPPD;EC 1.13.11.27)催化生物体内对羟苯基丙酮酸与O2作用形成尿黑酸的反应,是植物体中质体醌和生育酚生物合成途径的关键酶。当其活性受到抑制时,植物体中作为类胡萝卜素生物合成途径中最终电子受体和光合链电子传递体的质体醌的生物合成受阻,进而导致类胡萝卜素合成减少,光合链电子传递受阻,致使植物体出现白化症状。目前已经开发了多种以HPPD为靶标的除草剂,该类除草剂及抗除草剂转基因植物研究具有广阔的前景。对这一新型白化型除草剂靶标酶以及耐该类除草剂转基因植物的研究进展作了简要综述。

关键词: 对羟苯基丙酮酸双加氧酶除草剂转基因植物    
Abstract:

ρ-Hydroxyphenylpyruvate dioxygenase(HPPD)catalyzes the formation of homogentisate from ρ-hydroxyphenylpyruvate and O2. In plant, HPPD is one of the key enzymes in the biosynthesis of prenylquinones plastoquinones and tocopherol. Since plastoquinone is the final electron acceptor in carotenoid biosynthesis, a lack of this component in thylakoids impairs carotenoid biosynthesis, which results in bleaching symptoms in leaves as in phytoene desaturase inhibition. Currently, three bleaching herbicide families which target for HPPD, isoxazoles, triketones, and pyrazoles, have been reported.  Some kinds of this herbicides family are used    control of a wide range of important broadleaf and grass weeds in maize and rice filed. Advances in this new bleaching-herbicide target enzyme and herbicide-resistant transgenic plants were  overviewed.

Key words:  ρ-Hydroxyphenylpyruvate dioxygenase    Herbicide    Transgenic plants
收稿日期: 2009-04-08 出版日期: 2009-12-21
ZTFLH:  Q819  
基金资助:

河北省自然科学基金资助项目(C2009000181)

通讯作者: 梁玉玲     E-mail: yuling_liang@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
梁玉玲
于静娟

引用本文:

梁玉玲 于静娟. 新型白化型除草剂靶标酶对羟苯基丙酮酸双加氧酶及其耐性转基因植物研究进展*[J]. 中国生物工程杂志, 2009, 29(12): 100-107.

LIANG Yu-Ling, XU Jing-Juan. Advances in a New Target for Bleaching-herbicide ρ-hydroxyphenylpyruvate Dioxygenase and Herbicide-resistant Transgenic Plants. China Biotechnology, 2009, 29(12): 100-107.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2009/V29/I12/100

[1] Sandmann G, Boeger P. Inhibition of carotenoid biosynthesis by herbicides. in: Boeger P,Sandmann G ed. Target sites of herbicide action. Boca Raton, FL, USA.: CRC Press,1989. 25~44
[2] Soeda T, Uchida T. Inhibition of pigment synthesis by 1,3dimethyl4(2,4cichlorobenzoyl)5hydroxypyrazole, norflurazon, and new herbicidal compounds in radish and flatsedge plants. Pestic Biochem Physiol, 1987,29: 35~42
[3] Sekino K. Plastoquinonebiosynthesisinhibition herbicides. Regulation of Plant Growth & Development,2002,37(2):146~155
[4] Crouch N P, Adlington R M, Baldwin J E, et al. A mechanistic rationalization for the substrate specificity of recombinant mammalian 4hydroxyphenylpyruvate dioxygenase(4HPPD). Tetrahedron,1997,53: 6993~7010
[5] Amaya A A, Brzezinski K T, Farrington N,et al. Kinetic analysis of human homogentisate 1,2dioxygenase. Arch Biochem Biophys,2004 ,421(1):135~142
[6] Norris S R, Barrette T R, DellaPenna D.Genetic dissection of carotenoid synthesis in arabidopsis defines plastoquinone as an essential component of phytoene desaturation. Plant Cell,1995,7(12):2139~2149
[7] Norris S R, Shen X, Dellapenna D. Complementation of the Arabidopsis pdsl mutation with the gene encoding phydroxyphenylpyruvate dioxygenase. Plant Physiol,1998,117:1317~1323
[8] Serre L, Sailland A, Sy D, et al. Crystal structure of Pseudomonas fluorescens 4hydroxyphenylpyruvate dioxygenase: an enzyme involved in the tyrosine degradation pathway. Structure, 1999, 7(8):977~988
[9] Matringe M, Sailland A, Pelissier B, et al. pHydroxyphenylpyruvate dioxygenase inhibitorresistant plants. Pes Manag Sci,2005,61:269~276
[10] Fritze I M, Linden L, Freigang J, et al. The crystal structures of Zea mays and Arabidopsis 4hydroxyphenylpyruvate dioxygenase. Plant Physiol,2004,134:1388~1400
[11] Yang C, Pflugrath J W, Camper D L, et al. Structural basis for herbicidal inhibitor selectivity revealed by comparison of crystal structures of plant and mammalian 4hydroxyphenylpyruvate dioxygenases. Biochemistry,2004,43:10414~10423
[12] Tomoeda K, Awata H, Matsuura T, et al. Mutations in the 4hydroxyphenylpyruvic acid dioxygenase gene are responsible for tyrosinemia type III and hawkinsinuria. Mol Genet Metab,2000,71(3):506~510
[13] Falk J, Krauss N, Daehnhardt D, et al. The senescence associated gene of barley encoding 4 hydroxyphenylpyruvate dioxygenase is expressed during oxidative stress. J Plant Physiol,2002,159:1245~1253
[14] Garcia I, Rodgers M, Pepin R, et al. Characterization and subcellular compartmentation of recombinant 4hydroxyphenylpyruvate dioxygenase from Arabidopsis in transgenic tobacco. Plant Physiol,1999,119:1507~1516
[15] Garcia I, Rodgers M, Lenne C, et al. Subcellular localization and purification of a phydroxyphenylpyruvate dioxygenase from cultured carrot cells and characterization of the corresponding cDNA. Biochem J, 1997,325:761~769
[16] Falk J, Brosch M, Schfer A, et al. Characterization of transplastomic tobacco plants with a plastid localized barley 4hydroxyphenylpyruvate dioxygenase. J Plant Physiol,2005,162(7):738~742
[17] Kavana M, Moran G R. Interaction of 4hydroxyphenylpyruvate dioxygenase with the specific inhibitor 2[2nitro4(trifluoromethyl)benzoyl]1,3cyclohexanedione. Biochemistry,2003,42(34):10238~10245
[18] Norris S R, Barrette T R, DellaPenna D. Genetic dissection of carotenoid synthesis in arabidopsis defines plastoquinone as an essential component of phytoene desaturation. Plant Cell,1995,7(12):2139~2149
[19] Pallett K E, Little J P, Sheekey M, et al. The mode of action of isoxaflutole I.physiological effects,metabolism, and selectivity. Pesticide Biochemistry and Physiology,1998,62(2):113~124
[20] Shaner D L.Herbicide safety relative to common targets in plants and mammals. Pest Manag Sci, 2003,60:17~24
[21] Purpero V M, Moran G R. Catalytic, noncatalytic, and inhibitory phenomena: kinetic analysis of(4hydroxyphenyl)pyruvate dioxygenase from Arabidopsis thaliana. Biochemistry,2006,45(19):6044 ~6055
[22] Garcia I, Job D Matringe. Inhibition of phydroxyphenylpyruvate dioxygenase by the diketonitrile ofIsoxaflutole:a case of halfsite reactivity. Biochemistry,2000,39:7501~7507
[23] 苏少泉. 硝磺酮在玉米田的使用问题. 现代化农业,2008,10:1~2 Su S Q. Modernizing Agriculture,2008,10:1~2
[24] 周小军,戴为光,马赵江.磺草酮防除夏玉米地杂草的效果, 杂草科学,2008,2:76,86 Zhou X J,Dai W G,Ma Z J.Weed Science, 2008,2:76,86
[25] 王广祥, 刘喜尧, 王喜军等. 40%磺草酮莠去津悬浮剂苗后防除玉米田杂草应用技术研究.吉林农业科学,2008,33(1):40~42,53 Wang G X,Lu X R,Wang X J,et al. Journal of Jilin Agricultural Sciences, 2008,33(1):40~42, 53
[26] Sailland A, Rolland A, Matringe M, et al. DNA sequence of a gene of hydroxyphenyl pyruvate dioxygenase and production of plants containing a gene of hydroxyphenyl pyruvate dioxygenase and which are tolerant to certain herbicides. Patent appl. WO 96/38567,1996.12.01
[27] Falk J, Andersen G, Kernebeck B, et al. Constitutive overexpression of barley 4hydroxyphenylpyruvate dioxygenase in tobacco results in elevation of the vitamin E content in seeds but not in leaves. FEBS Letters,2003,540 :35~40
[28] Zink O, Paget E, Rolland A, et al. Herbicide tolerant plants through bypassing metabolic pathway.France, WO. 02/36 787,2002,10,05
[29] Rippert P, Scimemi C, Dubald M, et al. Engineering plant skimate pathway for production of tocotrienol and improving herbicide resistance. Plant Physiol,2004,134:92 ~100
[30] Liang Y, Minami H, Sato F. Isolation of herbicideresistant 4hydroxyphenylpyruvate dioxygenase from cultured Coptis japonica cells. Biosci Biotechnol Biochem,2008,72(11):30593062
[1] 王旭静, 张欣, 刘培磊, 王志兴. 复合性状转基因植物的应用现状与安全评价[J]. 中国生物工程杂志, 2016, 36(4): 18-23.
[2] 安新民 荆艳萍 刘军梅 张志毅. 一种消除转基因植物潜在风险的新技术[J]. 中国生物工程杂志, 2010, 30(02): 115-119.
[3] 郭斌 祁洋 尉亚辉. 转基因植物检测技术的研究进展[J]. 中国生物工程杂志, 2010, 30(02): 120-126.
[4] 贾会勇,田佳,李培青,李杰. DHDPS突变基因作为转基因植物筛选标记的研究[J]. 中国生物工程杂志, 2009, 29(05): 61-65.
[5] 何毅敏,年洪娟,陈丽梅. 植物耐盐基因工程研究进展[J]. 中国生物工程杂志, 2009, 29(03): 100-104.
[6] 李波,张耀洲. 抗菌肽Cecropin及其在转基因植物抗菌中的应用[J]. 中国生物工程杂志, 2008, 28(5): 122-127.
[7] 王秀君,郎志宏,单安山,黄大昉. 氨基酸生物合成抑制剂类除草剂作用机理及耐除草剂转基因植物研究进展[J]. 中国生物工程杂志, 2008, 28(2): 110-116.
[8] 李会珍,张志军. 植物合成长链多不饱和脂肪酸研究进展[J]. 中国生物工程杂志, 2008, 28(12): 112-115.
[9] 吴迪,王秋玉. 转转基因植物对根际土壤生态系统的影响[J]. 中国生物工程杂志, 2007, 27(2): 113-118.
[10] 陈观平,王慧中,施农农,陈受宜. Na+/H+ 逆向转运蛋白与植物耐盐性关系[J]. 中国生物工程杂志, 2006, 26(05): 101-106.
[11] 张金国,刘翔,崔金杰,雒珺瑜. 转基因(Cry1Ac)抗虫棉对土壤微生物的影响[J]. 中国生物工程杂志, 2006, 26(05): 78-80.
[12] 张玲. Bt杀虫剂研究进展[J]. 中国生物工程杂志, 2005, 25(S1): 91-94.
[13] 杨培龙, 姚斌, 范云六. 饲料用非淀粉多糖水解酶转基因植物的研究进展[J]. 中国生物工程杂志, 2005, 25(9): 29-34.
[14] 陈松彪, 李旭刚, 王锋, 朱祯. 无选择标记转基因植物的培育[J]. 中国生物工程杂志, 2005, 25(02): 1-7.
[15] 张娅, 曾君祉, 周志勇, 陈毓荃, 黄华樑. 植物性口服疫苗研究进展[J]. 中国生物工程杂志, 2004, 24(9): 12-15.