Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2009, Vol. 29 Issue (03): 94-99    
综述     
基因工程改良在昆虫病原真菌中的应用
边强1,2,王广君1,张泽华1,高松1,农向群1
1. 中国农业科学院植物保护研究所植物病虫害生物学国家重点实验室
2. 沈阳农业大学植物保护学院
The Application of Strain Improvement by Genetic Engineering on Entomopathogenic Fungi
 全文: PDF(411 KB)   HTML
摘要:

昆虫病原真菌是自然界控制害虫种群的主要生物因子,其研究开发越来越受到重视。但由于存在致死速度慢、防效不稳定、对环境条件要求高等缺点,限制了昆虫病原真菌的应用。近年来,通过基因工程技术对昆虫病原真菌进行遗传改造,提高菌株的致病性和毒力,创造高效、稳定的工程菌株取得了较大进展。对昆虫病原真菌选择标记、遗传转化方法、基因工程改良及应用等方面最新研究进展进行了综述。

关键词: 昆虫病原真菌;基因工程;转化方法;菌株改良    
Abstract:

Entomopathogenic fungi are the main biological factors of controlling pest population in nature, but its application was limited because of their poor performance in field. With the rapid development of fungal molecular biology and gene engineering, large progress has been made in improving the strain’s virulence and creating highly efficient and stable strain. The latest advance of entomopathogenic fungi in genetic engineering was reviewed in this paper, mainly including selective markers, some transformation methods, and the application of improved strains.

Key words: Entomopathogenic fungi;Genetic engineering;Transformation method;Strain improvement
收稿日期: 2008-12-03 出版日期: 2009-03-31
ZTFLH:  Q789  
基金资助:

国家科技支撑计划课题资助(2006BAD08A18);其它项目基金

通讯作者: 张泽华   
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
边强 王广君 张泽华 高松 农向群

引用本文:

边强,王广君,张泽华,高松,农向群. 基因工程改良在昆虫病原真菌中的应用[J]. 中国生物工程杂志, 2009, 29(03): 94-99.

BIAN Jiang- Wang-An-Jun- Zhang-Ze-Hua- Gao-Song- Nong-Xiang-Qun. The Application of Strain Improvement by Genetic Engineering on Entomopathogenic Fungi. China Biotechnology, 2009, 29(03): 94-99.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2009/V29/I03/94

[1] 裴炎,方卫国,张永军. 昆虫病原真菌致病寄主的机制和基因工程改良. 农业生物技术学报,2003,11(3):221~226 Pei Y, Fang W G, Zhang Y J. Journal of Agricultural Biotechnology, 2003,11(3):221~226 [2] 吕丁丁,李增智,王成树. 虫生真菌分子致病机理及基因工程改造研究进展. 微生物学通报,2008,35(3):443~449 Lu D D, Li Z Z, Wang C S. Microbiology, 2008.35(3):443~449 [3] Singh R P S. Molecular methods in plant pathology. Bocaraton, US, CRC Lans Publishers, 1995.475~492 [4] Punt P J, Oliver R P, Dingemanse M A, et al. Transformation of Aspergillus nidulans based on the hygromycin B resistance marker from Escherichia coli. Gene, 1987, 56:117~124 [5] 黄亚丽,叶婧,蒋细良,等. 真菌遗传转化系统的研究进展. 微生物通报,2007,34(6):1213~1217 Huang Y L, Ye Q, Jiang X L, et al. Microbiology, 2007, 34(6):1213~1217 [6] Daboussi M J, Djeballi A, Gerlinger C, et al. Transformation of seven species of filamentous fungi using the nitrate reductase gene of Aspergillus nidulans. Curr Genet, 1989, 15(6):453~456 [7] Kinghorn J R, Unkles S E, Sandhu S S, et al. Cloning of nitrate reductase gene (niaD) of Aspergillus niger and it's use for transformation of Beauveria bassiana. In:Biotechnology of microbes and sustainable utilization. Scientific Publisher, India, 2002, pp:127~132 [8] Sandhu S S, Kinghorn J R, Rajak R C, et al. Transformation system of Beauveria bassiana and Metarhizium anisopliae using nitrate reductase gene of Aspergillus nidulans. Indian J Exp Biol, 2001, 39(7):650~653 [9] Staats C C, Junges A, Fitarelli M, et al. Gene inactivation mediated by Agrobacterium tumefaciens in the filamentous fungi Metarhizium anisopliae. Appl Microbiol Biotechnol, 2007, 76(4):945~950 [10] Krappmann S, Sasse C, Braus G H. Gene targeting in Aspergillus fumigatus by homologous recombination is facilitated in a nonhomologous endjoiningdeficient genetic background. Eukaryot Cell, 2006, 5:212~215 [11] Leclerque A, Wan H, Abschutz A, et al. Agrobacteriummediated insertional mutagenesis (AIM) of the entomopathogenic fungus Beauveria bassiana. Curr Genet, 2004, 45(2):111~119 [12] dos Reis M C, Fungaro M H P, Duarte R T D, et al. Agrobacterium tumefaciensmediated genetic transformation of the entomopathogenic fungus Beauveria bassiana. J Microbiol Methods, 2004,58(2):197~202 [13] Barreto C C, Alves L C, Aragao F J,et al. High frequency gene transfer by microprojectile bombardment of intact conidia from the entomopathogenic fungus Paecilomyces fumosoroseus. FEMS Microbiol Lett, 1997, 156(1):95~99 [14] Lima I G, Duarte R T, Furlaneto L, et al. Transformation of the entomopathogenic fungus Paecilomyces fumosoroseus with Agrobacterium tumefaciens. Lett Appl Microbiol, 2006, 42(6):631~636 [15] Bogo M R, Vainstein M H, Aragao F J L, et al. High frequency gene conversion among benomyl resistant transformants in the entomopathogenic fungus Metarhizium anisopliate. FEMS Microbiol Lett, 1996, 142:123~127 [16] Duarte R T D, Staats C C, Fungaro M H P, et al. Development of a simple and rapid Agrobacterium tumefaciensmediated transformation system for the entomopathogenic fungus Metarhizium anisopliae var. acridum. Lett Appl Microbiol, 2007, 44(3):248~254 [17] Inglis PW, Tigano M S, ValadaresInglis M C. Transformation of the entomopathogenic fungi, Paecilomyces fumosoroseus and Paecilomyces lilacinus (Deuteromycotina:Hyphomycetes) to benomyl resistance. Genet Mol Biol, 1999, 22(1): 119 ~ 123 [18] Fang W, Zhang Y, Yang X, et al. Agrobacterium tumefaciensmediated transformation of Beauveria bassiana using an herbicide resistance gene as a selection marker. J Invertebr Pathol,2004,85(1):18~24 [19] 马德良. 球孢白僵菌原生质体遗传转化研究及其杀虫相关基因的分离,长春:吉林农业大学学院硕士学位论文,2006 Ma D L.Protoplast genetic transformation studies and cloning of genes related with viralence of Beauveria bissiana.Changchun: Master Dissertation of Jilin Agricultural University, 2006 [20] Jiang Q, Ying S, Feng M. Enhanced frequency of Beauveria bassiana blastospore transformation by restriction enzymemediated integration and electroporation. J Microbiol Methods, 2007, 69(3):512~517 [21] Cantone F A, Vandenberg J D. Genetic transformation and mutagenesis of the entomopathogenic fungus Paecilomyces fumosoroseus. J of Invertebr Pathol, 1999, 74:281~288 [22] Yang X, Ying S, Feng M. Construction of Paecilomyces fumosoroseus protoplasttransforming system by restriction enzymemediated integration (REMI). J Zhejiang University (Agriculture and Life Sciences), 2006, 32 (6):606~612 [23] Inglis PW, Arago F J,Frazo H, et al. Biolistic cotransformation of Metarhizium anisopliae var. acridum strain CG423 with green fluorescent protein and resistance to glufosinate ammonium. FEMS Microbiol Lett, 2000, 191: 249 ~ 254 [24] Nakazato L, Dutra V, Broetto L, et al. Development of an expression vector for Metarhizium anisopliae based on the tef1 alpha homologous promoter. Appl Microbiol Biotechnol, 2006, 72(3):521~528 [25] Cantone F A, Vandenberg J D. Use of the green fluorescent protein for investigations of Paecilomyces fumosoroseus in insect hosts. J Invertebr Pathol, 1999, 74(2):193~197 [26] Duek L, Kaufman G, Ulman Y, et al. The pathogenesis of dermatophyte infections in human skin sections. J Infect, 2004, 48(2):175~180 [27] Fang W, Pei Y, Bidochka M J. Transformation of Metarhizium anisopliae mediated by Agrobacterium tumefaciens. Can J Microbiol. 2006, 52(7):623~626 [28] 应盛华. 球孢白僵菌孢壁蛋白相关的耐热分子机理及其耐热性的遗传改良,杭州:浙江大学博士学位论文,2006 Ying S H.Molecular mechanism involved in the cellwall protein related thermotolerance of Beauveria bassiana and applied to genetic improvement of the fungal thermotolerance,Hangzhou: Degree of Doctor of Science in Zhejiang University, 2006 [29] Mishra, N C, Tatum, E L. NonMendelian inheritance of DNAinduced inositol independence in Neurospora. Proc Natl Acad Sci USA, 1973(12), 70:3875~3879 [30] 李娟,杨金奎,梁连铭,等. 丝状真菌遗传转化系统研究进展. 江西农业大学学报,2006,28(4):516~520 Li J, Yang J K, Lian L M, et al. Acta Agriculturae Universitatis Jiangxiensis, 2006, 28(4): 516 ~ 520 [31] Jin K, Zhang Y, Luo Z, et al. An improved method for Beauveria bassiana transformation using phosphinothricin acetlytransferase and green fluorescent protein fusion gene as a selectable and visible marker. Biotechnol Lett, 2008, 30(8):1379~1383 [32] 苏彩云,靳发彬,张佳,等.丝状真菌的DNA 转化方法.河北化工,2007,30(7):29~31 Su C Y, Jin F S, Zhang J, et al. Hebei Chemical Engineering and Industry, 2007, 30(7):29~31 [33] Cao Y, Peng G, He Z, et al. Transformation of Metarhizium anisopliae with benomyl resistance and green fluorescent protein genes provides a tag for genetically engineered strains. Biotechnol Lett, 2007, 29(6):907~911 [34] Kim S, Song J, Choi H T. Genetic transformation and mutant isolation in Ganoderma lucidum by restriction enzymemediated integration. FEMS Microbiol Lett, 2004, 233(2):201~204 [35] Schiestl R H, Petes T D. Integration of DNA fragments by illegitimate recombination in Saccharomyces cerevisiae. Proc Natl Acad Sci USA, 1991, 88(17):7585~7589 [36] Bundock P, van Attikum H, den DulkRas A, et al. Insertional mutagenesis in yeasts using TDNA from Agrobacterium tumefaciens. Yeast, 2002, 19(6):529~536 [37] De Groot M J A, Bundock P, Hooykaas PJ J, et al. Agrobacterium tumefaciensmediated transformation of filamentous fungi. Nat Biotechnol, 1998, 16:839~842 [38] Michielse C B, Hooykaas PJ, van den Hondel C A, et. al. Agrobacteriummediated transformation as a tool for functional genomics in fungi. Curr Genet, 2005, 48(1):1~17 [39] 迟彦,周东坡. 根癌农杆菌介导的真菌遗传转化及其应用. 菌物学报,2005,24(4):613~614 Chi Y, Zhou D P. Mycosystema, 2005, 24(4): 613 ~ 614 [40] St Leger R J, Screen S E. Prospects for strain improvement of fungal pathogens of insects and weeds.In:Butt T M,Jackson C,Morgan N,Fungal biocontro agents:Progress,problems and Potential,London:CABI International,2001,219~238 [41] St Leger R, Joshi L, Bidochka M J, et al. Construction of an improved mycoinsecticide overexpressing a toxic protease. Proc Natl Acad Sci USA, 1996, 93(13):6349~6354 [42] Fang W, Leng B, Xiao Y, et al. Cloning of Beauveria bassiana chitinase gene Bbchitl and its application to improve fungal strain virulence. Appl Environ Microbiol, 2005, 71(1):360~370 [43] Bernier L, Cooper R M, Charnley A K, et al. Transformation of the entomopathogenic fungus Metarhizium anisopliae to benomyl resistance. FEMS Microbiol Lett, 1989, 60:26 ~266 [44] Clarkson J M, Charnley A K. New insights into the mechanisms of fungal pathogenesis in insects. Trends Microbiol, 1996, 4(5):197~203

[1] 王青, 徐彦召, 魏晓晓, 王秋霞, 杭柏林, 孙亚伟, 王飞飞, 胡建和. 猪繁殖与呼吸综合征病毒GP5a多克隆抗血清的制备[J]. 中国生物工程杂志, 2015, 35(8): 38-43.
[2] 夏文跃, 王晶, 赵冰心, 潘小霞, 文喻玲, 陈元鼎. 轮状病毒VP4抗原表位在VP6载体蛋白同一位点表达比较研究[J]. 中国生物工程杂志, 2015, 35(8): 9-15.
[3] 高飞, 周婧, 刘晓彤, 李成磊, 姚慧鹏, 赵海霞, 吴琦. 苦荞锌指蛋白基因FtLOL1的克隆及其对非生物胁迫的应答[J]. 中国生物工程杂志, 2015, 35(8): 44-50.
[4] 万方, 张斌, 陈民良, 陈进聪, 陈雪岚. proCputP基因的敲除对钝齿棒杆菌产L-精氨酸生理代谢的影响[J]. 中国生物工程杂志, 2015, 35(8): 51-58.
[5] 常玉梅, 侯占铭. 禾谷镰刀菌中FgPDE1基因的敲除及其功能的研究[J]. 中国生物工程杂志, 2015, 35(8): 59-67.
[6] 申冬玲, 尚淑梅, 李卫娜, 严金平, 伊日布斯. ack基因敲除对Thermoanaerobacterium calidifontis Rx1发酵代谢的影响[J]. 中国生物工程杂志, 2015, 35(7): 37-44.
[7] 罗婉月, 李天明, 于莹, 许湄雪, 仪宏. Ketogulonigenium vulgare四环素诱导表达穿梭质粒的构建[J]. 中国生物工程杂志, 2015, 35(5): 81-86.
[8] 龚隆财, 罗镇明, 杨雁青, 王振宇, 向军俭, 王宏. cTnI-linker-TnC融合蛋白的原核表达及鉴定[J]. 中国生物工程杂志, 2015, 35(4): 48-53.
[9] 陈静静, 邢桂春, 张令强. 基于Loxp-Cre系统的FBXL15基因敲除小鼠模型的建立[J]. 中国生物工程杂志, 2015, 35(4): 74-79.
[10] 方世雄, 马义, 沈淑桃, 赵绍军, 洪岸. 基因重组TNFα衍生物TRSP10的高效制备及其对DU145细胞抑制作用研究[J]. 中国生物工程杂志, 2015, 35(4): 11-16.
[11] 王晓艳, 陈娜子, 艾君, 赵央, 吴美玉, 黄金枝, 姜潮, 李校堃. HBVpre-c-Fc融合蛋白在杆状病毒表达系统中的表达及其生物学活性研究[J]. 中国生物工程杂志, 2015, 35(4): 42-47.
[12] 肖仕圆, 许敬亮, 陈小燕, 杨柳, 袁振宏. 在大肠杆菌中表达酮酸脱羧酶产异戊醇[J]. 中国生物工程杂志, 2015, 35(4): 60-65.
[13] 刘阳, 杨雅麟, 张宇婷, 冉超, 周志刚. 维氏气单胞菌B565β-N-乙酰氨基葡萄糖苷酶的表达、纯化及酶学性质[J]. 中国生物工程杂志, 2015, 35(2): 38-44.
[14] 申梁, 谭文杰. 冠状病毒反向遗传操作技术及其应用进展[J]. 中国生物工程杂志, 2015, 35(2): 84-91.
[15] 夏亚穆, 李晨晨. 环糊精葡萄糖基转移酶的基因改造与高效表达[J]. 中国生物工程杂志, 2015, 35(2): 105-110.