Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2009, Vol. 29 Issue (03): 100-104    
综述     
植物耐盐基因工程研究进展
何毅敏,年洪娟,陈丽梅
昆明理工大学生物工程技术研究中心
Genetic Progress in Plant Resistance to Salt Stress
 全文: PDF(380 KB)   HTML
摘要:

盐害是影响植物生长和作物产量的主要因素之一。用于提高植物耐盐性的基因工程方法很多,最常见的就是在植物中过量表达抗盐相关的功能基因,包括植物信号传导蛋白基因、植物离子通道蛋白基因和合成小分子渗透剂的酶基因等。归纳了近年来植物耐盐基因工程的研究进展,并展望了植物耐盐基因工程的研究前景。

关键词: 盐害胁迫;耐盐基因;转基因植物    
Abstract:

Salinity is the main limitation factor for plant growth and crop production. To improve salinity tolerance of plants, many approaches by genetic means towards to manipulating expression of functionally related classes of genes such as signaling pathways, ion channels and compatible solutes in the stabilization of biological structures under salinity stress are been developed. This review focuses on recent progress in molecular engineering to improve salt tolerance in plants and the possible problems in research.

Key words: salt stress;salinity-tolerance gene;plant
收稿日期: 2008-10-13 出版日期: 2009-03-31
ZTFLH:  Q78  
基金资助:

其它项目基金;省部基金

通讯作者: 陈丽梅   
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
何毅敏 年洪娟 陈丽梅

引用本文:

何毅敏,年洪娟,陈丽梅. 植物耐盐基因工程研究进展[J]. 中国生物工程杂志, 2009, 29(03): 100-104.

HE Yi-Min- Nian-Hong-Juan- Chen-Li-Mei. Genetic Progress in Plant Resistance to Salt Stress. China Biotechnology, 2009, 29(03): 100-104.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2009/V29/I03/100

[1] 曾洪学, 王俊. 盐害生理和植物抗盐性. 生物学通报, 2005, 40, 9: 1~3 Zeng H X, Wang J. Bulletin of Biology, 2005, 40, 9: 1~3 [2] 李合生. 现代植物生理学. 北京:高等教育出版社, 2002: 408~409 Li H S. Modern Plant Physiology. Beijing: Higher Education Press. 2002.408~ 409 [3] Winicov I. New molecular approaches to improving salt tolerance in crop plants. Annals of Botany, 1998, 82: 703~710 [4] Xiang Y, Huang Y M, Xiong L Z. Characterization of stressresponsive CIPK genes in rice for stress tolerance improvement. Plant Physiology, 2007, 144: 1416~1428 [5] Kim B G, Waadt R. The calcium sensor CBL10 mediates salt tolerance by regulating ion homeostasis in Arabidopsis. The Plant Journal, 2007, 52(3): 473~484 [6] Cao W H, Liu J, He X J, et al. Modulation of ethylene responses affects plant saltstress responses. Plant Physiology, 2007, 143(2): 707~719 [7] Quan R D, Lin H X, Mendoza I, et al. SCABP8/CBL10, a putative calcium sensor, interacts with the protein kinase SOS2 to protect arabidopsis shoot from salt stress. Plant Cell, 2007, 19 (4): 1415~1431 [8] Wang M, Gu D, Liu T, et al. Overexpression of a putative maize calcineurin Blike protein in Arabidopsis confers salt tolerance. Plant Mol Biol. 2007,65(6):733~746 [9] Anwar A, Khan M,Akbar D V. Seshu ethylene as an indicator of salt tolerance in rice. Cro PSci. 1987, 27:1242~1247 [10] Zhang Z G,Zhou H L, Chen T, et al. Evidence for serine/threonine and histidine kinase activity in the tobacco ethylene receptor protein NTHK2. Plant Physiol. 2004,136(2): 2971~2981 [11] Gao S, Zhang H, Tian Y, et al. Expression of TERF1 in rice regulates expression of stressresponsive genes and enhances tolerance to drought and highsalinity. Plant Cell Rep. 2008 27(11):1787~1795 [12] Lee H E, Shin D, Park S R, et al. Ethylene responsive element binding protein 1 (StEREBP1) from Solanum tuberosum increases tolerance to abiotic stress in transgenic potato plants. Biochemical and Biophysical Research Communications.2007, 353(4):863~868 [13] Wang H, Huang Z, Chen Q, et al. Ectopic overexpression of tomato JERF3 in tobacco activates downstream gene expression and enhances salt tolerance. Plant Mol Biol. 2004, 55(2):183~192 [14] Ghars M A, Parre E, Debez A, et al. Comparative salt tolerance analysis between Arabidopsis thaliana and Thellungiella halophila, with special emphasis on K+/Na+ selectivity and praline accumulation. J Plant Physiol, 2008, 165(6): 588~599 [15] Huang S B, Spielmeyer W, Lagudah E S, et al. A sodium transporter (HKT7) is a candidate for Nax1, a gene for salt tolerance in durum wheat. Plant Physiology, 2006, 142(4), 1718~1727 [16] Obata T, Kitamoto H K, Nakamura A, et al. Rice shaker potassium channel OsKAT1 confers tolerance to salinity stress on yeast and rice cells. Plant Physiology, 2007, 144(4): 1978~1985 [17] Qiu N W, Chen M, Guo J R, et al. Coordinate upregulation of VH+ATPase and vacuolar Na+/H+ antiporter as a response to NaCl treatment in a C3 halophyte Suaeda salsa. Plant Science, 2007, 172: 1218~1225 [18] Zhao J S, Zhi D Y, Xue Z Y, et al. Enhanced salt tolerance of transgenic progeny of tall fescue (Festuca arundinacea) expressing a vacuolar Na+/H+ antiporter gene from Arabidopsis. Journal of Plant Physiology 2007, 164(10): 1377~1383 [19] Chen L H, Zhang B, Xu Z Q. Salt tolerance conferred by overexpression of Arabidopsis vacuolar Na+/H+ antiporter gene AtNHX1 in common buckwheat (Fagopyrum esculentum). Transgenic Res. 2008. 17(1):121~132. [20] Zhou S, Chen X, Zhang X, et al. Improved salt tolerance in tobacco plants by cotransformation of a betaine synthesis gene BADH and a vacuolar Na+/H+ antiporter gene SeNHX1. Biotechnol Lett. 2008. 30(2):369~376 [21] Qiao W H, Zhao X Y, Li W, et al. Overexpression of AeNHX1, a rootspecific vacuolar Na+/H+ antiporter from Agropyron elongatum, confers salt tolerance to Arabidopsis and Festuca plants. Plant Cell Rep. 2007. 26(9):1663~1672 [22] Brini F, Hanin M, Mezghani I,et al. Overexpression of wheat Na+/H+ antiporter TNHX1 and H+pyrophosphatase TVP1 improve salt and droughtstress tolerance in Arabidopsis thaliana plants. J Exp Bot. 2007. 58(2):301~308 [23] Huang J, Hirji R, Adam L, et al. Genetic engineering of glycinebetaine production toward enhancing stress tolerance in plants: metabolic limitation. Plant Physiology, 2000, 122(3): 747~756 [24] 张楠楠, 徐香玲. 植物抗盐机理的研究. 哈尔滨师范大学自然科学学报, 2005, 21(1):65~68 Zhang N N, Xu X L. Journal of Harbin Normal University, 2005, 21(1):65~68 [25] Sakamoto A, Murata A N. Metabolic engineering of rice leading to biosynthesis of glycinebetaine and tolerance to salt and cold. Plant Molecular Biology, 1998, 38(6): 1011~1019 [26] Zhang J, Tan W, Yang X H, et al. Plastidexpressed choline monooxygenase gene improves salt and drought tolerance through accumulation of glycine betaine in tobacco. Plant Cell Rep. 2008. 27(6):1113~1124 [27] Kumar S, Dhingra A, Daniell H. Plastidexpressed betaine aldehdye dehdyrogenase gene in carrot cultured cells, roots, and leaves confers enhanced salt tolerance. Plant Physiol. 2004. 136(1):2843~2854 [28] Li Q L, Gao X R, Yu X H, et al. Molecular cloning and characterization of betaine aldehdye dehdyrogenase gene from Suaeda liaotungensis and its use in improved tolerance to salinity in transgenic tobacco. Biotechnol Lett. 2003. 25(17):1431~1436 [29] Liang Z, Ma D, Tang L, et al. Expression of the spinach betaine aldehdye dehdyrogenase (BADH) gene in transgenic tobacco plants. Chin J Biotechnol. 1997.13(3):153~159 [30] Penna S. Building stress tolerance through overproducing trehalose in transgenic plants. Plant Science. 2003 8(8): 355~367 [31] Cortina C, CuliáezMacià F. Tomato abiotic stress enhanced tolerance by trehalose biosynthesis. Plant Science. 2005, 169(1): 75~82 [32] Ge L F, Chao D Y, Shi M, et al. Overexpression of the trehalose6phosphate phosphatase gene OsTPP1 confers stress tolerance in rice and results in the activation of stress responsive genes Planta Planta. 2008, 228:191~201 [33] Garg A K, Kim J, Owens T G, et al. Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc Natl Acad Sci U S A, 2002, 99(25):15898~15903 [34] 张淑红, 张恩平, 庞金安,等. 植物耐盐性研究进展. 北方园艺, 2000, 134:19~20 Zhang S H, Zhang E P, Pang J A, et al. Northern Horticulture. 2000, 134:19~20 [35] 杨少辉, 季静, 王罡等. 盐胁迫对植物影响的研究进展. 分子植物育种, 2006, 3(4):139~142 Yang S H, Ji J, Wang G, et al. MoleularPlant Breeding. 2006, 3(4):139~142

[1] 温赛, 杨建国. 地衣芽孢杆菌原生质体电转化方法的研究[J]. 中国生物工程杂志, 2015, 35(7): 76-82.
[2] 徐登安, 赵纯钦, 张赤红, 陈静. 大麦水孔蛋白基因HvTIP2;1及其启动子的表达特性分析[J]. 中国生物工程杂志, 2015, 35(7): 15-21.
[3] 高珊, 陈炜, 于磊, 李静, 孙彩显, 高杰, 刘牧. 小鼠和大鼠的胚胎培养基及若干相关问题[J]. 中国生物工程杂志, 2015, 35(7): 83-93.
[4] 张旭宁, 权春善, 廖颖玲, 柳科欢, 熊文, 范圣第. 金黄色葡萄球菌双组分系统反应调节蛋白AgrA的原核表达、纯化及活性鉴定[J]. 中国生物工程杂志, 2015, 35(5): 32-40.
[5] 高越, 檀硕, 任兆瑞, 张敬之. 原位染色检测慢病毒载体转录通读方法的建立[J]. 中国生物工程杂志, 2015, 35(5): 55-60.
[6] 郭兆来, 白学贵, 严金平, 陈宣钦, 李昆志, 徐慧妮. 菠菜SoHb基因的原核表达及功能分析[J]. 中国生物工程杂志, 2015, 35(4): 54-59.
[7] 房战, 徐美娟, 饶志明, 满在伟, 许正宏, 耿燕, 陆茂林. 过量表达钝齿棒杆菌柠檬酸合酶编码基因prpC2对L-精氨酸合成的影响[J]. 中国生物工程杂志, 2015, 35(3): 49-55.
[8] 蒋延超, 蒋世云, 傅凤鸣, 黄凯, 康星欣, 徐丹. 透明质酸生物合成途径及基因工程研究进展[J]. 中国生物工程杂志, 2015, 35(1): 104-110.
[9] 艾君, 姜潮, 刘敏, 王晓艳, 田海山, 李校堃. 拟南芥双油体蛋白融合表达KGF-2及其生物学活性研究[J]. 中国生物工程杂志, 2015, 35(1): 21-26.
[10] 郝梓凯, 李丕武, 郝昭程, 陈利飞. 敲除frdB基因对大肠杆菌厌氧混合酸发酵的影响[J]. 中国生物工程杂志, 2014, 34(11): 67-75.
[11] 柴玉琼, 张玉红, 韩凝, 朱睦元. 植物维生素E基因工程研究进展[J]. 中国生物工程杂志, 2014, 34(11): 100-106.
[12] 吴花拉, 张严玲, 罗旭, 葛飞, 潘光堂, 沈亚欧. 位点特异性重组系统及其在植物转基因研究中的应用[J]. 中国生物工程杂志, 2014, 34(11): 107-118.
[13] 马义, 罗天杰, 洪岸. 新型重组VPAC2激动剂RD的制备及促进胰岛素功能的分子机制[J]. 中国生物工程杂志, 2014, 34(11): 60-66.
[14] 杨慧, 焦红梅. 细菌菌影作为新型疫苗和递送载体的研究进展[J]. 中国生物工程杂志, 2014, 34(9): 108-112.
[15] 刘雪杰, 林巍然, 唐立春, 孙薇, 魏汉东, 姜颖. 慢病毒载体介导RAB27A基因过表达对人HepG2肝癌细胞增殖的影响[J]. 中国生物工程杂志, 2014, 34(9): 16-23.