Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2009, Vol. 29 Issue (02): 119-124    
技术与方法     
检测纳米材料毒性的若干实验方法
杨文娟1,沈涔超1,张治洲1,2
1. 天津科技大学BIO-X系统生物技术研究中心
2. 上海交通大学BIO-X生命科学研究中心
Several approaches for toxixicty assessment of nanomaterials
 全文: PDF(653 KB)   HTML
摘要:

纳米材料进入生命体和环境以后可能带来的生物安全问题需要定量的测定。现有的检测纳米材料生物安全性的方法大致可分为体内和体外实验两种,但是还没有证据表明既有的某个方法单独能作为一种检测所有纳米材料毒性的通用方法,也没有证据表明这些方法合在一起就能全面评估纳米材料的生物安全性。本文在总结既有的若干方法的同时,报道了一种基于rpsL基因的复制保真性来定量检测纳米材料毒性的方法。纳米材料对rpsL基因的体内体外复制过程保真性的影响均可方便地定量测定。

关键词: 纳米材料;毒性;纳米安全;DNA复制保真性;rpsL    
Abstract:

Because of their specific physical chemical properties, nanomaterials need quantitative toxicity assessment when released into environment. Although there are some approaches to test the safety of nanomaterials, including in vitro and in vivo methods, there has been no evidence that a single standard way can work as a universal approach to evaluate toxicity of nanomaterials; even the combination of present approaches is still not enough for thourough assessment. While summarizing present methods, this study reported a new protocol to quantitatively detect perturbance on rpsL DNA replication fidelity induced by nanomaterials, both in vitro and in vivo.

收稿日期: 2008-12-24 出版日期: 2009-03-31
通讯作者: 张治洲   
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
杨文娟 沈涔超 张治洲

引用本文:

杨文娟,沈涔超,张治洲. 检测纳米材料毒性的若干实验方法[J]. 中国生物工程杂志, 2009, 29(02): 119-124.

YANG Wen-Juan- Chen-Cen-Chao- Zhang-Chi-Zhou. Several approaches for toxixicty assessment of nanomaterials. China Biotechnology, 2009, 29(02): 119-124.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2009/V29/I02/119

[1] Takenaka S, Karg E, Roth C, et a1. Pulmonary and systemic distribution of inhaled tdtrafine silver particles in rats. Environ Health Pempect, 2001, 109(S4): 547~551 [2] 贾光, 郑玉新. 充分认识纳米材料安全性研究的重要意义. 中华预防医学杂志, 2007, 3, 41(2): 83~84 JIA G, ZHENG Y X. Pay attention to the research on safety and health applications of nanomaterial. Chinese Journal of Preventive Medicine, 2007, 3, 41(2): 83~84 [3] Oberdorster G, Ferin J, Lehnert BE. Correlation between particle size, in vivo particle persistence, and lung injury .Environ Health Perspect, 1994, 102 Suppl 5: 173~179 [4] Ferin J, Oberdorster G, Penney DP. Pulmonary retention of ultrafine and fine particles in rats. Am J Reapir Cell Mol Biol, 1992, 6(5): 535~542 [5] Renwick LC, Brown D, Clouter A, et a1. Increased inflammation and altered macrophage chemotactic responses caused by two ultrafine particle types. Occup Environ Med, 2004, 61: 442~447 [6] Lam C W, James J, Tmccluskey R, et a1. Pulmonary toxicity of singlewall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol Sci, 2004, 77: 126~134 [7] Renwick L C, Brow N D, Clouter A, et a1. Increased inflammation and altered macrophage chemotactic response caused by two ultrafine particle types. Occup Environ Med, 2004, 61, 442~447 [8] Edirto B, James BM, Brian AW, et al. Pulmonary responses of mice, rats and hamsters to subchronicnltion of ultrafine titanium dioxide particles. Toxicol Sei, 2004, 77: 34 7~357 [9] Tan M H, Commens CA, Burnett L, et a1. A pilot study on the percutaneous absorption of mlcrofine titanium dioxide from sunscreens. Aus J Dermatol, 1996, 37(4): 185~187 [10] Schulz J, Hohenberg H, Pflucker F, et a1. Distribution of sunscreens on skin .Adv Drug Deliv Rev, 2002, 54 Suppl 1: 157~163 [11] Lademann J, Weigmann H, Rickmeyer C, et a1. Penetration of titanium dioxide microparticles in a sunscreen formulation into the horny layer and the follicular orifice. Skin Pharmacol Appl Skin Physiol, 1999, 12(5): 247~256 [12] Bennat C, MullerGoymann CC. Skin penetration and stabilization of formulations containing microfine titanium dioxide as physical UV filter. Int J Cosmetic Sci, 2000, 22(4): 271~283 [13] 刘颖, 宋伟民, 李卫华,等. 多壁碳纳米管致A549 细胞毒性与氧化损伤的研究, 毒理学杂志, 2008,22(2): 92~95 LIU Y, CONG W M, LI W H, et al. In vitro cytotoxicity and oxidative damage effects of Multiwall carbon nanotube on A549 cell. Weisheng Dulixue Zazhi, 2008, 22(2): 92~95 [14] Shvedova A A. Toxieol Environ Health A, 2003, 66(20):1909~1926 [15] Stanley Y. Shaw, Elizabeth CWestly, Mikael J. Pittet, et al. Perturbational profiling of nanomaterial biologic activity. Proc. Natl. Acad. Sci. USA 2008, 105 (21): 7387~92 [16] Edward Jan, Stephen J. Byrne, Meghan Cuddihy, et al. HighContent Screening as a Universal Tool for Fingerprinting of Cytotoxicity of Nanoparticles. Nano 2008, 2(5): 928~38 [17] Fujii S, Akiyama M, Maki H, et al. DNA replication errors produced by the replicative apparatus of Escherichia coli. J Mol Biol. 1999, 289(4): 835~50 [18] Cline J, Braman J C,Hogrefe H H. PCR fidelity of Pfu DNA polymerase and other thermostable DNA polymerases. Nucleic Acids Res. 1996, 18: 354651 [19] Flaman J M, Frebourg T, Moreau V, et al. A rapid PCR fidelity assay. Nucleic Acids Res. 1994, 22(15): 3259~60 [20] 张治洲, 沈涔超, 刘清岱, 杨文娟, 贺林. 利用分子生物学技术定量检测纳米材料生物安全性的方法.中国专利200810053171.5 [21] McCann J, Ames BN. Detection of carcinogens as mutagens in the Salmonella/microsome test: assay of 300 chemicals: discussion. Proc. Natl. Acad. Sci. USA 1976, 73:950 954 [22] Maron D M, Ames B N. Revised methods for the salmonella mutagenicity test. Mutation Research 1983, 113(34):173~215 [23] Green M H L, Muriel W J. Mutagen testing using trp+ reversion in Escherichia coli. Mutation Research 1976, 38:3 32 [24] Mitchell A D, Auletta A E, Clive D, et al. The L5178Y/tk+/- mouse lymhoma specific gene and chromosomal mutation assay A phasw III report of the U.S. Environmental Prtection Agency Gene_Tox Program. Mutat Res, 1997, 394(11): 177~303
No related articles found!