缺氧抑制因子ZNF92在肝癌生长和侵袭中的功能研究

李婷婷, 张婷, 张亚楠, 刘婕, 丁丽华, 叶棋浓

中国生物工程杂志 ›› 2024, Vol. 44 ›› Issue (11) : 20-29.

PDF(2746 KB)
PDF(2746 KB)
中国生物工程杂志 ›› 2024, Vol. 44 ›› Issue (11) : 20-29. DOI: 10.13523/j.cb.2403008
研究报告

缺氧抑制因子ZNF92在肝癌生长和侵袭中的功能研究

作者信息 +

Functional Study of Hypoxia-inhibitory Factor ZNF92 in the Growth and Invasion of Hepatocellular Carcinoma

Author information +
文章历史 +

摘要

目的:探究缺氧调控因子锌指蛋白92(zinc finger proteins 92,ZNF92)在肝细胞癌生长和侵袭中发挥的功能及其可能的调控机制。方法:(1)利用RNA-seq筛选出缺氧抑制因子ZNF92并通过RT-qPCR和Western blot检测缺氧环境(1% O2)对ZNF92的mRNA表达水平和蛋白质表达水平的影响。(2)利用慢病毒载体构建敲低ZNF92基因的肝癌细胞系。(3)通过CCK-8实验、划痕试验和Transwell实验确定ZNF92基因对肝癌细胞HepG2、SMMC7721生长和侵袭的影响。(4)通过在敲低ZNF92基因的稳定肝癌细胞系中瞬时转染锌指E盒结合同源盒1 (zinc finger E-box binding homeobox,ZEB1)的siRNA,通过Western blot确定ZEB1转染成功,并在该细胞系中检测ZNF92能否通过调控ZEB1的表达调控上皮间充质转化(epithelial-mesenchymal transition,EMT)进程。(5)通过在敲低ZNF92基因的稳定肝癌细胞系中瞬时转染缺氧诱导因子1α(hypoxia-inducible factor 1α,HIF-1α)的siRNA,检测ZNF92是否可能通过HIF-1α影响细胞迁移和侵袭。结果:(1)缺氧抑制ZNF92的mRNA表达和蛋白质表达。(2)ZNF92调控EMT的关键转录因子ZEB1的蛋白质表达影响EMT进程。(3)ZNF92抑制肝癌细胞迁移和侵袭,但不影响肝癌细胞增殖。(4)ZNF92通过ZEB1部分调控肝癌细胞迁移和侵袭。(5)ZNF92可能通过HIF-1α调控ZEB1以影响肝癌细胞迁移和侵袭。结论:新缺氧抑制因子ZNF92可能通过HIF-1α影响EMT进程,进而通过调控ZEB1影响肝癌细胞的迁移和侵袭。

Abstract

Objective: To investigate the function and mechanism of the hypoxia-regulated factor zinc finger proteins 92 (ZNF92) in hepatocellular carcinoma cell growth and invasion. Methods: (1) The mRNA and protein expression levels of ZNF92 were detected by RT-qPCR and Western blot. (2) ZNF92 knockdown hepatocellular carcinoma cell line was established using lentiviral vectors. (3) The effects of ZNF92 on hepatocellular carcinoma HepG2 cells, and SMMC7721 cell growth and invasion in vitro were evaluated by CCK-8, scratch and transwell assays. (4) Small interfering RNA (siRNA) was used to determine the knockdown of ZEB1 expression and to determine whether ZNF92 indirectly regulates the epithelial-mesenchymal transition (EMT) process through ZEB1. (5) siRNA was used to determine the knockdown of HIF-1α and to detect the changes in cell migration and invasive ability. Results: (1) Hypoxia inhibited the mRNA and protein expression of ZNF92. (2) ZNF92 regulates the protein expression of zinc finger E-box binding homeobox 1 (ZEB1), a key transcription factor of EMT, thereby affecting the EMT process. (3) ZNF92 inhibits hepatocellular carcinoma migration and invasion without affecting the proliferation process. (4) ZNF92 partially regulates migration and invasion of hepatocellular carcinoma cells through ZEB1. (5) ZNF92 may partially regulate ZEB1 through HIF-1α to affect the migration and invasion of hepatocellular carcinoma cells. Conclusions: The novel hypoxia-inhibitory factor ZNF92 may affect the EMT process through HIF-1α, and then affect the migration and invasion of hepatocellular carcinoma cells by regulating ZEB1.

关键词

肿瘤缺氧 / 锌指蛋白92 / 缺氧诱导因子1α / 锌指E盒结合同源盒1

Key words

Hypoxia of tumors / ZNF92 / HIF-1α / ZEB1

引用本文

导出引用
李婷婷, 张婷, 张亚楠, . 缺氧抑制因子ZNF92在肝癌生长和侵袭中的功能研究[J]. 中国生物工程杂志, 2024, 44(11): 20-29 https://doi.org/10.13523/j.cb.2403008
LI Tingting, ZHANG Ting, ZHANG Yanan, et al. Functional Study of Hypoxia-inhibitory Factor ZNF92 in the Growth and Invasion of Hepatocellular Carcinoma[J]. China Biotechnology, 2024, 44(11): 20-29 https://doi.org/10.13523/j.cb.2403008
中图分类号: Q816   
缺氧是实体瘤的一个重要特征,它所形成的微环境能促进上皮间充质转化(epithelial-mesenchymal transition,EMT),进而加速肿瘤转移过程,影响肿瘤的恶性程度,并与患者的高死亡率紧密相关。作为原发性肝癌主要类型的肝细胞癌,其内部也同样存在着缺氧现象。在缺氧微环境中,肝癌细胞不仅能继续存活,还能在一定程度上降低缺氧造成的损害,这进一步证明了缺氧环境在肿瘤发生和恶性进展中扮演着关键角色。肝细胞癌是一种预后较差、具有高度侵袭性的肿瘤,其高复发率和转移率是导致肝癌患者死亡率居高不下的重要原因之一。
在缺氧环境下,缺氧诱导因子1α(HIF-1α)的表达被激活,其在肿瘤细胞中的过表达能促进肿瘤转移,缺氧诱导因子(hypoxia-inducible factor,HIF)信号途径在肿瘤转移进展中发挥着重要作用。目前已经发现,HIF通过直接调控上皮间充质转化的转录因子,如ZEB1、TWIST和SNAIL促进EMT发生。在结直肠癌[1]、膀胱癌[2]、胶质母细胞瘤[3]和胰腺癌细胞中[4],HIF-1α能直接调节ZEB1表达来调控EMT过程;在乳腺癌细胞中,HIF与转录因子TWIST启动子的缺氧反应元件(hypoxia response element,HRE)结合发生反式激活以促进EMT的发生[5]。此外,HIF还可与小鼠C166细胞的HRE结合激活Snail的表达。缺氧激活的HIF-1α在乳腺癌中增强Notch靶基因(如HES1HEY1)的表达,从而增强Notch信号通路,直接诱导SNAIL表达并促进EMT。此外,缺氧还可以通过TGF-β信号诱导胃癌细胞发生EMT。现在的研究主要集中在缺氧诱导因子的功能和机制,而对缺氧抑制因子的研究较少。
锌指蛋白(zinc-finger proteins,ZNFs)家族是人类基因组中最大、最复杂的转录因子家族之一。锌指结构是普遍存在于高等生物中的锌结合序列,由20~30个氨基酸组成,能特异性识别DNA序列[6]。锌指蛋白是真核生物基因组中分布最广的一类蛋白质。自1983年首次在转录因子ⅢA(transcription factor ⅢA,TFⅢA)中发现锌指结构[7-8]起,现己发现10多种不同锌指蛋白家族广泛分布于真核生物和原核生物中,包括人类、小鼠、果蝇、酵母等,约占人类基因产物的1%[9]。在真核高级生物中,锌指蛋白家族作为最大的转录因子家族,具有广泛的分子生物学功能,锌指结构能与靶分子DNA、RNA、DNA-RNA的序列特异性结合,或与自身或其他锌指蛋白结合[6],在转录和翻译水平上调控基因的表达,参与信号转导、细胞生长、分化和发育等生物过程[10]。例如,锌指蛋白545(ZNF545)负调控细胞增殖,其启动子高甲基化后在多种恶性肿瘤中的表达降低[11]。在膀胱癌和慢性淋巴细胞白血病中,锌指蛋白2017(ZNF2017)作为促进细胞生长、抵抗细胞凋亡和化疗的癌基因发挥作用[12]
ZNF92是在使用锌指蛋白85(ZNF85)的KRAB结构域筛选人未分化胚胎癌细胞系中被鉴定的[13]。研究显示ZNF92在乳腺癌中过表达[14],乳腺癌作为一种转移性肿瘤,同在乳腺癌中高度表达的基因移码蛋白1(up-frameshift protein1,UPF1)现已发现可间接调控EMT影响乳腺癌的迁移和侵袭[15],已有数据分析显示ZNF92在肺癌、肝癌和膀胱癌等多种癌中高度表达[16],这预示着ZNF92也可能在肝癌细胞的迁移和侵袭中发挥作用。 RNA-seq分析发现ZNF92也是剪接模式可能改变的基因之一[17];尽管实体瘤基因组的改变似乎破坏了ZNF92[18],但其在肿瘤中发挥的功能尚未明确,通过全基因组关联分析(genome wide association study,GWAS)表明,ZNF92存在反式作用[19],这意味着ZNF92能识别或结合在其对应的顺式作用元件核心序列上参与靶基因调控,发挥转录调控功能。
我们通过模拟肿瘤内部缺氧环境筛选缺氧调控因子,发现一个新的缺氧抑制因子ZNF92。进一步研究发现ZNF92抑制肝细胞癌HepG2和SMMC7721细胞的迁移和侵袭。在肝癌细胞HepG2和SMMC7721中敲低ZNF92后,肝癌细胞HepG2和SMMC7721的迁移和侵袭能力显著增强,但对肝癌细胞HepG2和SMMC7721的增殖没有明显影响。深入研究后发现,ZNF92通过调控ZEB1表达来影响肝癌细胞的上皮间充质转化进程,这一过程可能通过HIF-1α发挥重要作用。

1 材料与方法

1.1 材 料

1.1.1 细胞培养

人肝癌细胞HepG2和SMMC7721由本实验室保存。细胞培养采用含有10%胎牛血清和1%青霉素-链霉素的DMEM培养基,并于5% CO2和37℃恒温的细胞培养箱中培养,细胞汇合密度达80%~90%时进行消化传代;缺氧处理的细胞放置于缺氧培养箱中培养。

1.1.2 实验试剂与仪器

DMEM培养基购自Gibco公司;胎牛血清购自杭州天杭生物公司;青霉素-链霉素溶液购自北京博迈德公司;pCDH-ZNF92购自湖南丰晖生物;质粒提取试剂盒购自赛默飞公司;PCR产物胶回收试剂盒、Trizol、SYBR Green荧光试剂、增强型化学发光试剂盒(ECL)等购自南京诺唯赞生物科技公司;CCK-8试剂盒购自Abcam公司;基质胶购自BD公司;转染试剂Lipofectamine RNAiMax购自Invitrogen公司;抗ZNF92多克隆抗体购自北京义翘神州公司;抗HIF-1α多克隆抗体购自Proteintech公司;抗E-cadherin单克隆抗体、抗N-cadherin单克隆抗体购自Abcam公司;抗Vimentin单克隆抗体购自Proteintech公司;抗ZEB1单克隆抗体购自碧云天生物技术公司;辣根过氧化物酶偶联的β-actin抗体、二抗羊抗兔抗体(αR)、二抗羊抗鼠抗体(αM)购自Santa Cruz公司; Steri-cycle CO2细胞培养箱、缺氧培养箱购自Thermo公司;PCR仪、实时定量PCR仪、化学发光凝胶成像仪器购自Bio-Rad公司。

1.2 方法

1.2.1 细胞增殖(CCK-8法)

根据CCK-8法测定细胞活力。根据每孔3×103个细胞计算细胞总数,将细胞接种在96孔板中,每组设置2个复孔。按照说明书制备CCK-8试剂,均匀加至96孔板中,在37℃的恒温细胞培养箱中培养,1 h后用酶标仪于吸收波长为450 nm处测量吸光度。在接下来的5天内于同一时间点在相同波长重复测读。

1.2.2 细胞迁移(划痕法)

将实验组和对照组细胞分别接种在6孔板中,当细胞密度达到90%时进行划痕试验。用200 μL Tip头尖端垂直孔板某一方向力度均匀且缓慢地画一条直线,用灭菌后已预冷的1×PBS轻轻洗涤细胞并更换培养基。在显微镜下拍照并在板上标记以记录起始位置。经24 h后,以标记的位置再次拍照记录。由两次拍照结果通过图像处理软件Image J进行处理并计算细胞迁移率。

1.2.3 细胞侵袭(Transwell法)

根据说明书准备所需基质胶,并将其均匀铺在Transwell室的上层,按每个小室接种5×104个细胞进行细胞浓度的稀释调整,待基质胶凝固完全,将由无血清及抗生素培养基制成的200 μL细胞悬液加入Transwell小室上层,在小室下层加入700 μL含有10% FBS的DMEM培养基,并在37℃恒温细胞培养箱中孵育24 h。取出后用4%多聚甲醛固定腔室30 min,然后用灭菌后预冷的1×PBS清洗腔室两次以除去4%多聚甲醛。将腔室置于24孔板中,并用700 μL 0.1%结晶紫染色15 min,继续用1×PBS清洗腔室至少2次,并用洁净棉签用1×PBS润湿后仔细轻柔擦拭腔室的上层,小室放置于新的24孔板中并于显微镜下拍照记录,以穿过腔室的细胞数量计算细胞相对侵袭能力。

1.2.4 蛋白质印迹

吸弃细胞培养皿中培养基,并用灭菌后已预冷的1×PBS洗涤细胞,利用洁净细胞刮板收取细胞于1.5 mL 离心管中,采用低温低速离心机(4℃,3 000 r/min)离心5 min获取细胞沉淀。加入细胞体积3倍用量放射免疫沉淀法裂解缓冲液 (RIPA lysis buffer)(已加入蛋白酶抑制剂),于冰上裂解30 min。通过微量分光光度计测定蛋白质浓度,计算蛋白质上样量。加入2×SDS蛋白质上样缓冲液,并充分混匀,将其置于沸水中煮沸15 min;取蛋白质样品进行10% SDS-PAGE,待电泳结束后采用半干法转移至硝酸纤维素膜。用5%的脱脂牛奶于摇床封闭1 h,一抗于4℃冰箱过夜孵育,用1×TBST洗膜3次后可孵育二抗,二抗于室温孵育1 h,用1×TBST洗膜3次后,滴加增强型化学发光试剂于化学成像系统显影,由图像处理软件Image J进行条带灰度值计算。

1.2.5 实时荧光定量PCR(RT-qPCR)

获取细胞沉淀,采用Trizol法进行总RNA提取,两步法获得cDNA,使用Bio-Rad的实时定量PCR仪进行扩增检测,然后进行熔解曲线分析,采用2-ΔΔCt法计算相对表达量。ZNF92上游引物序列:5'- CCCTGGAATCTGAAGAGACAT -3';ZNF92下游引物序列:5'- GTACACCTTACATGCATCCAC -3';β-actin上游引物序列:5'- GGAAATCGTGCGTGACATT -3';β-actin下游引物序列:5'- CAGGCAGCTCGTAGCTCTT -3'。

1.2.6 小干扰 RNA转染

按照RNAiMax试剂转染手册进行转染:提前1天将细胞接种于6孔板,转染前1 h对细胞进行换液。设置对照组与实验组,分别用无血清、无双抗的DMEM培养基稀释转染试剂RNAiMax与小干扰RNA,将其混合均匀后逐滴加入6孔板,轻轻晃匀后放入细胞恒温培养箱,转染4~6 h后对转染的细胞进行换液,48~72 h后可进行后续实验。

1.2.7 统计分析

使用GraphPad Prism 7.0软件进行统计分析,两组的均数比较用Student’ t 检验;不同组之间的比较采用单因素方差分析。P<0.05被认为具有统计学意义。

2 结果

2.1 缺氧抑制肝癌细胞ZNF92的mRNA表达和蛋白质表达

肝癌细胞HepG2、SMMC7721于1% O2浓度的缺氧培养箱培养12 h、24 h,对照组于37℃恒温细胞培养箱内培养同等时长,收集不同时长细胞样品提取总RNA及细胞蛋白质样品,检测ZNF92的mRNA表达水平与蛋白质表达水平,以HIF-1α蛋白表达增加作为成功缺氧的阳性对照。结果显示,肝癌细胞HepG2、SMMC7721在缺氧12 h、24 h后,ZNF92 mRNA表达水平降低(图1A),变化具有统计学意义;ZNF92蛋白表达水平(图1B)降低。
图1 以1% O2浓度缺氧处理12 h、24 h后肝癌细胞中ZNF92的mRNA表达与蛋白质表达

A: 实时荧光定量PCR,检测肝癌细胞HepG2与SMMC7721以1% O2浓度培养12 h、24 h后ZNF92的mRNA表达变化 (** P<0.01,*** P<0.001) B: 蛋白质印迹,检测肝癌细胞HepG2与SMMC7721细胞以1% O2浓度培养12 h、24 h后ZNF92的蛋白质表达变化

Fig.1 mRNA expression and protein expression of ZNF92 in hepatocellular carcinoma cells after hypoxia treatment with 1% oxygen concentration for 12 h and 24 h

A: Determination of ZNF92 mRNA expression in hepatocellular carcinoma cells HepG2 and SMMC7721 after 12 h and 24 h of incubation in an anoxic incubator with 1% O2 (** P<0.01,*** P<0.001) B: Determination of ZNF92 protein expression in hepatocellular carcinoma cells HepG2 and SMMC7721 cultured in an anoxic incubator with 1% O2 for 12 h and 24 h

Full size|PPT slide

2.2 ZNF92调控EMT关键转录因子ZEB1的蛋白质表达

构建敲低ZNF92基因的稳定细胞系HepG2、SMMC7721,在细胞系中检测EMT相关转录因子的蛋白质表达:SLUG蛋白表达变化不明显,ZEB1蛋白表达增加;进行ZNF92基因回补后,EMT转录因子SLUG的蛋白质无明显变化,ZEB1的蛋白质基本恢复到初始水平,如图2所示。
图2 敲低ZNF92后肝癌细胞ZEB1、SLUG的蛋白表达变化

A: 蛋白质印迹检测肝癌细胞HepG2与SMMC7721敲低细胞系中SLUG、ZEB1蛋白表达变化 B:相对蛋白质表达量统计分析 (** P<0.01)

Fig.2 Detect changes in ZEB1 and SLUG protein expression by knocking down ZNF92 in hepatocellular carcinoma cells

A: Protein immunoblotting to detect changes in protein expression of SLUG, ZEB1 in hepatocellular carcinoma cells HepG2 with SMMC7721 knockdown cell line B:Statistical analyses of relative protein expression (** P< 0.01)

Full size|PPT slide

2.3 ZNF92抑制肝癌细胞的迁移、侵袭

在肝癌细胞HepG2、SMMC7721中敲低ZNF92基因,肝癌细胞的迁移能力增加,进行ZNF92基因回补后,肝癌细胞的迁移能力基本恢复到初始水平(图3A),与对照组相比具有统计学意义;肝癌细胞的侵袭能力增加,进行ZNF92基因回补后,肝癌细胞的侵袭能力基本恢复到初始水平(图3B),与对照组相比具有统计学意义。肝癌细胞的增殖能力无明显变化(图3C)。
图3 敲低ZNF92对肝癌细胞迁移、侵袭和增殖能力的影响

A: 细胞划痕试验,在HepG2、SMMC7721细胞中敲低ZNF92并进行回补,检测细胞迁移情况,迁移的统计分析显示在右侧。比例尺:100 μm (* P<0.05,** P<0.01) B:细胞侵袭实验,在HepG2、SMMC7721细胞中敲低ZNF92并进行回补,检测细胞侵袭情况,侵袭的统计分析显示在右侧。比例尺:100 μm (* P<0.05) C: 细胞增殖曲线测定,在HepG2、SMMC7721细胞中敲低ZNF92并进行回补,检测细胞增殖情况

Fig.3 Effect of knockdown of ZNF92 on migration, invasion and proliferation ability of hepatocellular carcinoma cells

A: ZNF92 knockdown and post-knockdown supplementation in HepG2 and SMMC7721 cells to detect cell migration, statistical chart on the right. Scale bar: 100 μm (* P<0.05,** P<0.01) B: ZNF92 knockdown and post-knockdown supplementation in HepG2 and SMMC7721 cells to detect cell invasion, statistical chart on the right. Scale bar: 100 μm (* P<0.05) C: ZNF92 knockdown and post-knockdown supplementation in HepG2 and SMMC7721 cells to detect cell proliferation

Full size|PPT slide

2.4 ZNF92部分通过ZEB1调控肝癌细胞的迁移和侵袭以影响EMT进程

为了进一步确定ZNF92能否通过调控ZEB1影响肝癌细胞的EMT过程,我们通过在稳定细胞株中瞬时转染ZEB1 siRNA,检测细胞的迁移和侵袭能力变化及EMT标志物E-cadherin、N-cadherin和Vimentin的蛋白质表达变化。结果表明,在稳定细胞株中瞬时转染ZEB1 siRNA后,HepG2、SMMC7721的迁移和侵袭能力有所恢复(图4A、B),与对照组相比具有统计学意义;表明ZNF92是部分通过调控ZEB1影响肝癌细胞迁移和侵袭而影响肝癌细胞的EMT过程(图4C)。
图4 ZNF92基因稳定敲低的肝癌细胞株中瞬时转染ZEB1 siRNA 后肝癌细胞迁移、侵袭能力的变化

A: 细胞划痕试验,在敲低ZNF92的HepG2、SMMC7721细胞中瞬时转染ZEB1 siRNA,检测细胞迁移情况,迁移的统计分析显示在右侧。比例尺:100 μm (* P<0.05,** P<0.01) B: 细胞侵袭实验,在敲低ZNF92的HepG2、SMMC7721细胞中瞬时转染ZEB1 siRNA,检测细胞侵袭情况,侵袭的统计分析显示在右侧。比例尺:100 μm (* P<0.05) C: 蛋白质印迹,检测敲低ZNF92的HepG2、SMMC7721细胞中E-cadherin、N-cadherin和Vimentin的蛋白质表达变化(左)及转染ZEB1 siRNA后ZEB1、ZNF92蛋白表达(右)

Fig.4 Changes in the migration and invasion ability of hepatoma cells after transient transfection of ZEB1 siRNA in hepatoma cell lines with stable knockdown of ZNF92 gene

A: Transient transfection of ZEB1 siRNA in HepG2, SMMC7721 cell lines knocked down for ZNF92 and detection of cell migration ability, statistical chart on the right. Scale bar: 100 μm (* P<0.05,** P<0.01) B: Transient transfection of ZEB1 siRNA in HepG2, SMMC7721 cell lines knocked down for ZNF92 and detection of cell invasion, statistical chart on the right. Scale bar: 100 μm (* P<0.05) C: Detection of protein expression changes of E-cadherin, N-cadherin and Vimentin in HepG2 and SMMC7721 cells with knockdown of ZNF92 (left) and ZEB1 and ZNF92 protein expression after transfection with ZEB1 siRNA (right)

Full size|PPT slide

2.5 ZNF92可能通过HIF-1α调控ZEB1以影响肝癌细胞的迁移和侵袭

为了进一步探索ZNF92是否通过HIF-1α影响肝癌细胞的EMT过程。我们在敲低ZNF92基因的稳定细胞株HepG2、SMMC7721中瞬时转染HIF-1α siRNA后,检测细胞迁移和侵袭能力的变化。结果发现,在稳定细胞株中瞬时转染HIF-1α siRNA后,HepG2、SMMC7721的迁移和侵袭能力有所恢复(图5A、B),与对照组相比具有统计学意义;表明ZNF92可能通过HIF-1α影响EMT进程。
图5 ZNF92基因稳定敲低的肝癌细胞株中瞬时转染HIF-1α siRNA 后肝癌细胞迁移、侵袭能力的变化

A: 细胞划痕试验,在敲低ZNF92的HepG2、SMMC7721细胞中瞬时转染HIF-1α siRNA,检测细胞迁移情况,迁移的统计分析显示在右侧。比例尺:100 μm (** P<0.01) B: 细胞侵袭实验,在敲低ZNF92的HepG2、SMMC7721细胞中瞬时转染HIF-1α siRNA,检测细胞侵袭情况,侵袭的统计分析显示在右侧。比例尺:100 μm (* P<0.05)

Fig.5 Changes in the migration and invasion ability of hepatoma cells after transient transfection of HIF-1α siRNA in hepatoma cell lines with stable knockdown of ZNF92 gene

A: Transient transfection of HIF-1α siRNA in HepG2, SMMC7721 cell lines knocked down for ZNF92 and detection of cell migration ability, statistical chart on the right. Scale bar: 100 μm (** P<0.01) B: Transient transfection of HIF-1α siRNA in HepG2, SMMC7721 cell lines knocked down for ZNF92 and detection of cell invasion, statistical chart on the right. Scale bar: 100 μm (* P<0.05)

Full size|PPT slide

3 讨论

肝细胞癌是原发性肝癌的主要类型,占原发性肝癌患者的90%,大多数肝癌患者常死于癌细胞的转移和复发,导致肝癌的预后仍然较差。肿瘤内部缺氧是实体瘤的特征之一,缺氧条件下基因的表达主要由缺氧诱导因子调节,然而缺氧的转移机制在很大程度上仍然未知。转移是肝癌临床治疗的一个挑战,它是一个复杂的动态过程,肿瘤转移促使具有高度侵袭性的肿瘤细胞获得从起源组织播散、在外来组织微环境中存活和在远处生长的能力。在早期的转移阶段,肿瘤细胞具有侵袭和迁移的特性,这使得肿瘤细胞具有能脱离局部原发肿瘤块并进入相邻和远处宿主组织的能力。有研究表明肿瘤细胞利用多种机制进行迁移和侵袭[20]。在临床前模型中,呼吸性高氧(60% O2)可促进肿瘤消退、减少转移性疾病并延长动物存活期[21]。体外肿瘤细胞迁移与EMT相关。这是一种上皮细胞类型失去其形态并获得间充质细胞类型形态的过程,它在肿瘤细胞迁移和侵袭过程中发挥着至关重要的作用,肿瘤细胞EMT通常在肿瘤、慢性气道疾病、肺纤维化、心脏病和肝病等中出现[22]。在探索影响肝癌细胞增殖和迁移的信号通路方面,已有研究表明转录因子IIH亚基2(GTF2H2)可能通过介导pAKT信号通路而增强肝癌细胞Hep3B的增殖和迁移能力。[23]
在本研究中,我们通过物理条件模拟肿瘤内部缺氧,通过对肝癌细胞进行不同时长缺氧处理后,利用RNA-seq技术筛选并验证了mRNA水平发生变化的基因,即锌指蛋白基因ZNF92。ZNF92是锌指蛋白家族的一员,目前有报道ZNF92在乳腺癌中高度表达[14],通过数据分析显示在肺癌、肝癌、膀胱癌中也有过表达[16],但其在肿瘤中的功能尚未报道。
实验结果表明,经过缺氧处理后,ZNF92的mRNA和蛋白质表达被抑制,而缺氧加剧了肿瘤恶性程度, 影响肿瘤转移和侵袭能力,我们推测ZNF92可能会影响肝癌细胞的迁移和侵袭能力。进一步的实验验证了这一猜想,我们在肝癌细胞中敲低ZNF92基因,检测肝癌细胞迁移和侵袭能力的变化,发现ZNF92抑制了肝癌细胞的迁移和侵袭,同时我们发现ZNF92对肝癌细胞的增殖却无明显影响。为了确定ZNF92是否通过EMT调控肝癌细胞迁移和侵袭,我们检测了EMT标志物E-cadherin、N-cadherin和Vimentin的蛋白质表达变化。结果表明,敲低ZNF92基因后,E-cadherin蛋白表达降低,N-cadherin蛋白表达增加,Vimentin蛋白变化不明显。
为进一步确定ZNF92是否通过EMT的关键转录因子ZEB1发挥调控肝癌细胞迁移和侵袭的作用,我们在敲低ZNF92基因的稳定细胞系中瞬时转染ZEB1 siRNA,结果发现肝癌细胞的迁移和侵袭能力有所恢复。这表明ZNF92部分通过ZEB1调控EMT进程。缺氧条件下,ZNF92表达受抑制,ZNF92又能调控EMT,为了确定缺氧诱导HIF-1α是否在这一调节过程发挥作用,我们在敲低ZNF92的肝癌稳定细胞系中瞬时转染HIF-1α siRNA,结果显示ZNF92可能通过调控HIF-1α来间接发挥调控ZEB1的作用以影响肝癌细胞的迁移和侵袭。但具体调控机制还未清晰,仍需进一步探索。

4 结论

综上所述,本研究首次发现了新的缺氧抑制因子ZNF92,ZNF92可能通过HIF-1α影响EMT进程,这是通过间接调控ZEB1发挥的作用,揭示了ZNF92在肝癌细胞迁移和侵袭中发挥的功能。这提示ZNF92可能是未来检测肝癌转移和侵袭恶性程度的指标,ZNF92有望成为癌症治疗的新靶点,可为深入研究ZNF92基因如何参与肿瘤细胞迁移与侵袭提供初步的实验和理论依据,很可能为药物靶点的研发提供新视角。

参考文献

[1]
Tian Q, Xue Y, Zheng W, et al. Overexpression of hypoxia-inducible factor 1α induces migration and invasion through Notch signaling. International Journal of Oncology, 2015, 47(2): 728-738.
Choriocarcinoma (CC) is the highest malignant gestational trophoblastic tumor which causes high mortality without timely treatment. HIF-1α is a very important molecule promoting neoplasm aggressiveness, metastasis through the induction of the epithelial to mesenchymal transition (EMT). Several researches have shown that Notch signaling is necessary for coupling hypoxia to the EMT. However, the pathway in choriocarcinoma remains undetermined. In this study, overexpression of HIF-1α inhibited epithelial index E-cadherin, cytokeratin 18 (CK18) and cytokeratin 19 (CK19) in two choriocarcinoma cell lines (JAR and JEG-3, respectively). The reciprocal changes associated with the EMT phenotypic transformation. The migration and invasive capability was significantly enhanced. HIF-1α overexpression was positively correlated with Notch1 and Hes1 (P<0.01; respectively). Using DAPT (Notch1 inhibitor) to knock down Notch1 expression, morphological and molecular typical changes of the EMT were detected in vitro. Knockdown of Notch1 prominently reduced MMP2 and MMP9 activities, and increased E-cadherin, CK18 and CK19 expression in JAR and JEG-3 cells (P<0.01). In vivo, serum-free suspension containing 5x106 JAR cells (lv-HIF-1α and lv-NC, respecticely) were implanted subcutaneously or injected intravenously into female NOD SCID mice, which were injected with DAPT or DMSO six times at 3-day intervals. Mice with subcutaneous nodules were injected i.v. fluorine-18 fluorodeoxyglucose (18F-FDG) and then scanned in small animal PET/CT (SA-PET/CT), and mice with lung metastasis were monitored by using the in vivo imaging system (IVIS). The in vivo data showed that inhibition of Notch signaling by DAPT treatment effectively suppressed metastatic tumor growth, metabolic activity and invasion. In summary, overexpression of HIF-1α promotes choriocarcinoma cell aggressiveness and metastasis through the regulation of the EMT dependenting on Notch signaling pathway.
[2]
Zhu J N, Huang Z X, Zhang M Z, et al. HIF-1α promotes ZEB 1 expression and EMT in a human bladder cancer lung metastasis animal model. Oncology Letters, 2018, 15(3): 3482-3489.
[3]
Joseph J V, Conroy S, Pavlov K, et al. Hypoxia enhances migration and invasion in glioblastoma by promoting a mesenchymal shift mediated by the HIF1α-ZEB1 axis. Cancer Letters, 2015, 359(1): 107-116.
Glioblastoma (GBM) is the most common brain tumor in adults and the mesenchymal GBM subtype was reported to be the most malignant, presenting severe hypoxia and necrosis. Here, we investigated the possible role of a hypoxic microenvironment for inducing a mesenchymal and invasive phenotype. The exposure of non-mesenchymal SNB75 and U87 cells to hypoxia induced a strong change in cell morphology that was accompanied by enhanced invasive capacity and the acquisition of mesenchymal marker expression. Further analyses showed the induction of HIF1α and HIF2α by hypoxia and exposure to digoxin, a cardiac glycoside known to inhibit HIF1/2 expression, was able to prevent hypoxia-induced mesenchymal transition. ShRNA-mediated knockdown of HIF1α, and not HIF2α, prevented this transition, as well as the knockdown of the EMT transcription factor ZEB1. We provide further evidence for a hypoxia-induced mesenchymal shift in GBM primary material by showing co-localization of GLUT1, ZEB1 and the mesenchymal marker YKL40 in hypoxic regions of the tumor. Collectively, our results identify a HIF1α-ZEB1 signaling axis that promotes hypoxia induced mesenchymal shift and invasion in GBM in a cell line dependent fashion. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
[4]
Deng S J, Chen H Y, Ye Z, et al. Hypoxia-induced LncRNA-BX111 promotes metastasis and progression of pancreatic cancer through regulating ZEB1 transcription. Oncogene, 2018, 37(44): 5811-5828.
[5]
Yang M H, Wu M Z, Chiou S H, et al. Direct regulation of TWIST by HIF-1α promotes metastasis. Nature Cell Biology, 2008, 10: 295-305.
[6]
Schmitges F W, Radovani E, Najafabadi H S, et al. Multiparameter functional diversity of human C2H 2 zinc finger proteins. Genome Research, 2016, 26(12): 1742-1752.
C2H2 zinc finger proteins represent the largest and most enigmatic class of human transcription factors. Their C2H2-ZF arrays are highly variable, indicating that most will have unique DNA binding motifs. However, most of the binding motifs have not been directly determined. In addition, little is known about whether or how these proteins regulate transcription. Most of the ∼700 human C2H2-ZF proteins also contain at least one KRAB, SCAN, BTB, or SET domain, suggesting that they may have common interacting partners and/or effector functions. Here, we report a multifaceted functional analysis of 131 human C2H2-ZF proteins, encompassing DNA binding sites, interacting proteins, and transcriptional response to genetic perturbation. We confirm the expected diversity in DNA binding motifs and genomic binding sites, and provide motif models for 78 previously uncharacterized C2H2-ZF proteins, most of which are unique. Surprisingly, the diversity in protein-protein interactions is nearly as high as diversity in DNA binding motifs: Most C2H2-ZF proteins interact with a unique spectrum of co-activators and co-repressors. Thus, multiparameter diversification likely underlies the evolutionary success of this large class of human proteins.© 2016 Schmitges et al.; Published by Cold Spring Harbor Laboratory Press.
[7]
Miller J, McLachlan A D, Klug A. Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes. EMBO Journal, 1985, 4(6): 1609-1614.
The 7S particle of Xenopus laevis oocytes contains 5S RNA and a 40-K protein which is required for 5S RNA transcription in vitro. Proteolytic digestion of the protein in the particle yields periodic intermediates spaced at 3-K intervals and a limit digest containing 3-K fragments. The native particle is shown to contain 7-11 zinc atoms. These data suggest that the protein contains repetitive zinc-binding domains. Analysis of the amino acid sequence reveals nine tandem similar units, each consisting of approximately 30 residues and containing two invariant pairs of cysteines and histidines, the most common ligands for zinc. The linear arrangement of these repeated, independently folding domains, each centred on a zinc ion, comprises the major part of the protein. Such a structure explains how this small protein can bind to the long internal control region of the 5S RNA gene, and stay bound during the passage of an RNA polymerase molecule.
[8]
Lee M S, Gippert G P, Soman K V, et al. Three-dimensional solution structure of a single zinc finger DNA-binding domain. Science, 1989, 245(4918): 635-637.
The three-dimensional solution structure of a zinc finger nucleic acid binding motif has been determined by nuclear magnetic resonance (NMR) spectroscopy. Spectra of a synthetic peptide corresponding to a single zinc finger from the Xenopus protein Xfin yielded distance and dihedral angle constraints that were used to generate structures from distance geometry and restrained molecular dynamics calculations. The zinc finger is an independently folded domain with a compact globular structure in which the zinc atom is bound by two cysteine and two histidine ligands. The polypeptide backbone fold consists of a well-defined helix, starting as alpha and ending as 3(10) helix, packed against two beta strands that are arranged in a hairpin structure. A high density of basic and polar amino acid side chains on the exposed face of the helix are probably involved in DNA binding.
[9]
Hoovers J M, Mannens M, John R, et al. High-resolution localization of 69 potential human zinc finger protein genes: a number are clustered. Genomics, 1992, 12(2): 254-263.
In this study, we describe the identification and partial characterization of 101 potential human zinc finger protein genes (ZnFPs). These sequences were isolated by hybridization of cosmids, obtained from mouse-human cell lines enriched for chromosome 11p, with an oligonucleotide specific for the "link" sequence between contiguous zinc fingers. Sixty-nine of these cosmids were regionally localized to human prometaphase chromosomes by in situ hybridization. The localization of these cosmids suggests that a number of finger protein genes occur in linked clusters. Their assignment to chromosomes 3p, 11p, 19p, 19qter, 20p, and 21q makes them valuable as markers or "candidate" genes for diseases associated with these chromosome regions.
[10]
Berry K, Wang J J, Lu Q R. Epigenetic regulation of oligodendrocyte myelination in developmental disorders and neurodegenerative diseases. F1000Research, 2020, 9: F1000FacultyRev-F1000Faculty105.
[11]
Czerwińska P, Shah P K, Tomczak K, et al. TRIM28 multi-domain protein regulates cancer stem cell population in breast tumor development. Oncotarget, 2017, 8(1): 863-882.
The expression of Tripartite motif-containing protein 28 (TRIM28)/Krüppel-associated box (KRAB)-associated protein 1 (KAP1), is elevated in at least 14 tumor types, including solid and hematopoietic tumors. High level of TRIM28 is associated with triple-negative subtype of breast cancer (TNBC), which shows higher aggressiveness and lower survival rates. Interestingly, TRIM28 is essential for maintaining the pluripotent phenotype in embryonic stem cells. Following on that finding, we evaluated the role of TRIM28 protein in the regulation of breast cancer stem cells (CSC) populations and tumorigenesis in vitro and in vivo. Downregulation of TRIM28 expression in xenografts led to deceased expression of pluripotency and mesenchymal markers, as well as inhibition of signaling pathways involved in the complex mechanism of CSC maintenance. Moreover, TRIM28 depletion reduced the ability of cancer cells to induce tumor growth when subcutaneously injected in limiting dilutions. Our data demonstrate that the downregulation of TRIM28 gene expression reduced the ability of CSCs to self-renew that resulted in significant reduction of tumor growth. Loss of function of TRIM28 leads to dysregulation of cell cycle, cellular response to stress, cancer cell metabolism, and inhibition of oxidative phosphorylation. All these mechanisms directly regulate maintenance of CSC population. Our original results revealed the role of the TRIM28 in regulating the CSC population in breast cancer. These findings may pave the way to novel and more effective therapies targeting cancer stem cells in breast tumors.
[12]
Busiello T, Ciano M, Romano S, et al. Role of ZNF224 in cell growth and chemoresistance of chronic lymphocitic leukemia. Human Molecular Genetics, 2017, 26(2): 344-353.
Chronic lymphocytic leukaemia (CLL) is associated with apoptosis resistance and defective control of cell growth. Our study describes for the first time a critical role in CLL for the KRAB-zinc finger protein ZNF224. High ZNF224 transcript levels were detected in CLL patients with respect to control cells. Moreover, ZNF224 expression was significantly lowered after conventional chemotherapy treatment in a subset of CLL patients. By in vitro experiments we confirmed that ZNF224 expression is suppressed by fludarabine and demonstrated that ZNF224 is involved in apoptosis resistance in CLL cells. Moreover, we showed that ZNF224 positively modulates cyclin D3 gene expression. Consistently, we observed that alteration of ZNF224 expression leads to defects in cell cycle control. All together, our results strongly suggest that in CLL cells high expression level of ZNF224 can lead to inappropriate cell growth and apoptosis resistance, thus contributing to CLL progression. Targeting ZNF224 could thus improve CLL response to therapy.© The Author 2016. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
[13]
Bellefroid E J, Marine J C, Ried T, et al. Clustered organization of homologous KRAB zinc-finger genes with enhanced expression in human T lymphoid cells. EMBO Journal, 1993, 12(4): 1363-1374.
KRAB zinc-finger proteins (KRAB-ZFPs) constitute a large subfamily of ZFPs of the Krüppel C2H2 type. KRAB (Krüppel-associated box) is an evolutionarily conserved protein domain found N-terminally with respect to the finger repeats. We report here the characterization of a particular subgroup of highly related human KRAB-ZFPs. ZNF91 is one representative of this subgroup and contains 35 contiguous finger repeats at its C-terminus. Three mRNA isoforms with sequence identity to ZNF91 were isolated by the polymerase chain reaction. These encode proteins with a KRAB domain present, partially deleted or absent. Five genomic fragments were characterized, each encoding part of a gene: the ZNF91 gene or one of four distinct, related KRAB-ZFP genes. All exhibit a common exon/intron organization with the variant zinc finger repeats organized in a single exon and the KRAB domain encoded by two separate exons. This positioning of introns supports the hypothesis that the mRNA isoforms encoding polypeptides with variability in the KRAB domain could arise by alternative splicing. By in situ chromosomal mapping studies and by analysis of fragments from a human genomic yeast artificial chromosome library containing KRAB-ZFP genes, we show that these genes occur in clusters; in particular, a gene complex containing over 40 genes has been identified in chromosomal region 19p12-p13.1. These ZNF91-related genes probably arose late during evolution since no homologous genes are detected in the mouse and rat genomes. Although the transcription of members of this KRAB-ZFP gene subgroup is detectable in all human tissues, their expression is significantly higher in human T lymphoid cells.
[14]
Kamran M, Bhattacharya U, Omar M, et al. ZNF92, an unexplored transcription factor with remarkably distinct breast cancer over-expression associated with prognosis and cell-of-origin. NPJ Breast Cancer, 2022, 8(1): 99.
[15]
胡凯, 胡静, 孙子久, 等. UPF1在乳腺癌细胞中的表达与作用的研究. 中国生物工程杂志, 2022, 42(1-2): 58-71.
Hu K, Hu J, Sun Z J, et al. Study on the expression and function of UPF 1 in breast cancer cells. China Biotechnology, 2022, 42(1-2): 58-71.
[16]
Machnik M, Cylwa R, Kiełczewski K, et al. The expression signature of cancer-associated KRAB-ZNF factors identified in TCGA pan-cancer transcriptomic data. Molecular Oncology, 2019, 13(4): 701-724.
The KRAB-ZNF (Krüppel-associated box domain zinc finger) gene family is composed of a large number of highly homologous genes, gene isoforms, and pseudogenes. The proteins encoded by these genes, whose expression is often tissue-specific, act as epigenetic suppressors contributing to the addition of repressive chromatin marks and DNA methylation. Due to its high complexity, the KRAB-ZNF family has not been studied in sufficient detail, and the involvement of its members in carcinogenesis remains mostly unexplored. In this study, we aimed to provide a comprehensive description of cancer-associated KRAB-ZNFs using publicly available The Cancer Genome Atlas pan-cancer datasets. We analyzed 6727 tumor and normal tissue samples from 16 cancer types. Here, we showed that a small but distinctive cluster of 16 KRAB-ZNFs is commonly upregulated across multiple cancer cohorts in comparison to normal samples. We confirmed these observations in the independent panels of lung and breast cancer cell lines and tissues. This upregulation was also observed for most of the KRAB-ZNF splicing variants, whose expression is simultaneously upregulated in tumors compared to normal tissues. Finally, by analyzing the clinicopathological data for breast and lung cancers, we demonstrated that the expression of cancer-associated KRAB-ZNFs correlates with patient survival, tumor histology, and molecular subtyping. Altogether, our study allowed the identification and characterization of KRAB-ZNF factors that may have an essential function in cancer biology and thus potential to become novel oncologic biomarkers and treatment targets.© 2018 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.
[17]
Stormo C, Kringen M K, Lyle R, et al. RNA-sequencing analysis of HepG 2 cells treated with atorvastatin. PLoS One, 2014, 9(8): e105836.
[18]
Ray M, Goldstein S, Zhou S G, et al. Discovery of structural alterations in solid tumor oligodendroglioma by single molecule analysis. BMC Genomics, 2013, 14: 505.
Background: Solid tumors present a panoply of genomic alterations, from single base changes to the gain or loss of entire chromosomes. Although aberrations at the two extremes of this spectrum are readily defined, comprehensive discernment of the complex and disperse mutational spectrum of cancer genomes remains a significant challenge for current genome analysis platforms. In this context, high throughput, single molecule platforms like Optical Mapping offer a unique perspective.;Results: Using measurements from large ensembles of individual DNA molecules, we have discovered genomic structural alterations in the solid tumor oligodendroglioma. Over a thousand structural variants were identified in each tumor sample, without any prior hypotheses, and often in genomic regions deemed intractable by other technologies. These findings were then validated by comprehensive comparisons to variants reported in external and internal databases, and by selected experimental corroborations. Alterations range in size from under 5 kb to hundreds of kilobases, and comprise insertions, deletions, inversions and compound events. Candidate mutations were scored at sub-genic resolution and unambiguously reveal structural details at aberrant loci.;Conclusions: The Optical Mapping system provides a rich description of the complex genomes of solid tumors, including sequence level aberrations, structural alterations and copy number variants that power generation of functional hypotheses for oligodendroglioma genetics.
[19]
Schröder C, Leitão E, Wallner S, et al. Regions of common inter-individual DNA methylation differences in human monocytes: genetic basis and potential function. Epigenetics & Chromatin, 2017, 10(1): 37.
[20]
Friedl P, Wolf K. Tumour-cell invasion and migration: diversity and escape mechanisms. Nature Reviews Cancer, 2003, 3(5): 362-374.
Cancer cells possess a broad spectrum of migration and invasion mechanisms. These include both individual and collective cell-migration strategies. Cancer therapeutics that are designed to target adhesion receptors or proteases have not proven to be effective in slowing tumour progression in clinical trials--this might be due to the fact that cancer cells can modify their migration mechanisms in response to different conditions. Learning more about the cellular and molecular basis of these different migration/invasion programmes will help us to understand how cancer cells disseminate and lead to new treatment strategies.
[21]
Hatfield S M, Kjaergaard J, Lukashev D, et al. Immunological mechanisms of the antitumor effects of supplemental oxygenation. Science Translational Medicine, 2015, 7(277): 277ra30.
[22]
Kalluri R, Weinberg R A. The basics of epithelial-mesenchymal transition. The Journal of Clinical Investigation, 2009, 119(6): 1420-1428.
[23]
欧阳琴, 李艳萌, 徐安健, 等. GTF2H2通过介导AKT信号通路影响肝癌细胞Hep3B的增殖和迁移. 中国生物工程杂志, 2021, 41(6): 4-12.
Ouyang Q, Li Y M, Xu A J, et al. GTF2H 2 affects the proliferation and migration of Hep3B hepatocellular carcinoma cells by mediating AKT signal pathway. China Biotechnology, 2021, 41(6): 4-12.

PDF(2746 KB)

214

Accesses

0

Citation

Detail

段落导航
相关文章

/