Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2024, Vol. 44 Issue (1): 72-87    DOI: 10.13523/j.cb.2312106
生物经济核心产业专题     
天然产物生物合成与微生物制造的挑战*
李秋阳1,2,孙文涛2,3,秦磊2,4,吕波1,4,**(),李春1,2,4,**()
1 北京理工大学医药分子科学与制剂工程工信部重点实验室 化学与化工学院 生物化工研究所 北京 100081
2 清华大学化学工程系 北京 100084
3 中国医学科学院药物研究所天然药物活性物质与功能国家重点实验室 北京 100050
4 清华大学工业生物催化教育部重点实验室 北京 100084
Challenges in the Biosynthesis of Natural Products and Microbial Manufacturing
Qiuyang LI1,2,Wentao SUN2,3,Lei QIN2,4,Bo LV1,4,**(),Chun LI1,2,4,**()
1 Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering (Ministry of Industry and Information Technology), Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering,Beijing Institute of Technology, Beijing 100081, China
2 Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
3 State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica,Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
4 Key Lab for Industrial Biocatalysis (Ministry of Education), Tsinghua University, Beijing 100084, China
 全文: PDF(2026 KB)   HTML
摘要:

天然产物是大自然赐予人类的资源宝库,与人类的生活质量和健康息息相关。利用传统方式获取天然产物存在含量低、提取工艺复杂耗时以及资源不可持续等问题,而化学合成步骤繁琐、成本高,这些都严重制约了天然产物的广泛应用。合成生物学赋能的微生物细胞工厂通过变革天然产物的传统获取方式,实现高效、绿色及可持续的生物制造。分析天然产物传统获取方式面临的挑战,总结不同类型微生物细胞工厂的特点及天然产物合成案例。基于天然产物代谢通路的复杂性、底盘细胞的稳定性可能导致产物的结构和性质难以预测以及纯度和收率低等问题,从催化元件的局限、途径组装调控及底盘网络重塑的角度分析设计微生物细胞工厂的应对策略,并针对微生物制造产品的发展与应用提出政策建议。

关键词: 天然产物生物制造微生物细胞工厂底盘细胞生物安全    
Abstract:

Natural products are a treasure trove given to mankind by nature and are intimately linked to human quality of life and health. Traditional methods of obtaining natural products face challenges such as low natural biocontent, complex and time-consuming extraction processes, and unsustainable resource utilization. The intricate structures of natural products also severely impede the commercialization of chemical total synthesis. Microbial cell factories, empowered by synthetic biology, have the potential to revolutionize the current approaches to natural product extraction, with the goal of efficient, eco-friendly, and controllable biomanufacturing. This review discusses the challenges posed by traditional methods of obtaining natural products and summarizes the characteristics of different types of cell factories along with examples of natural product synthesis. Considering the complexity of natural product metabolic pathways and issues such as unpredictable product structure and properties, low purity, and low yield due to the stability of chassis cells, the article analyzes the challenges in designing microbial cell factories from the perspective of catalytic component limitations, pathway assembly regulation, and chassis cell network remodeling. Strategies and countermeasures are discussed. Moreover, recommendations are proposed to address the current regulatory constraints in microbial manufacturing.

Key words: Natural products    Biomanufacturing    Microbial cell factories    Chassis cells    Biosafety
收稿日期: 2024-01-11 出版日期: 2024-02-04
ZTFLH:  Q819  
基金资助: *国家重点研发计划(2018YFA0901800)
通讯作者: ** 电子信箱: lv-b@bit.edu.cn; lichun@tsinghua.edu.cn   
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
李秋阳
孙文涛
秦磊
吕波
李春

引用本文:

李秋阳, 孙文涛, 秦磊, 吕波, 李春. 天然产物生物合成与微生物制造的挑战*[J]. 中国生物工程杂志, 2024, 44(1): 72-87.

Qiuyang LI, Wentao SUN, Lei QIN, Bo LV, Chun LI. Challenges in the Biosynthesis of Natural Products and Microbial Manufacturing. China Biotechnology, 2024, 44(1): 72-87.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2312106        https://manu60.magtech.com.cn/biotech/CN/Y2024/V44/I1/72

图1  微生物细胞工厂制造天然产物发展历程
类型 分类 名称 天然来源 功效 参考文献
萜烯类 单萜 柠檬烯 柑橘属果皮 抗炎、抗菌、镇静、促进消化、减肥 [11]
香叶醇 玫瑰 抗氧化、抗菌、保肝、神经保护 [12]
倍半萜 青蒿素 青蒿 抗疟疾 [13]
红没药烯 香柠檬 抗痒、消炎、抗癌 [11]
二萜 紫杉醇 红豆杉 抗肿瘤 [14]
香紫苏醇 抹香鲸/香紫苏 抗菌消炎、利胆、抗癌 [15]
三萜 甘草酸 甘草 免疫调节、抗肿瘤、抗病毒、保肝 [16]
原人参二醇 人参 镇静、促进细胞分化增殖、抗肿瘤、降血糖 [17]
齐墩果酸 丁香/女贞子、三七 抗HIV、抗菌、抗癌、抗溃疡、治疗骨质疏松 [18]
四萜 虾青素 雨生红球藻/红发夫酵母 抗氧化、抗炎、伤口愈合、保护心脏、保肝、抗糖尿病、神经保护、抗癌 [19]
番茄红素 番茄 抗氧化、保护心血管 [20]
黄酮类 黄酮 黄芩素 黄芩 保肝、镇静、抗过敏、抗炎 [21]
二氢黄酮 柚皮素 葡萄柚 抗氧化、抗雄激素、消炎、抗癌 [22]
黄酮醇 淫羊藿素 淫羊藿 抗肿瘤、神经保护、心血管保护、免疫调节、骨保护 [23]
生物碱 异喹啉类 吗啡 罂粟 治疗急性和慢性中度至重度疼痛 [24]
四氢异喹啉类 海鞘素 加勒比海鞘 抗肿瘤 [25]
单萜吲哚类 长春碱 长春花 抗肿瘤 [26]
酚酸 单羟基苯甲酸 水杨酸 柳树 缓解疼痛和发热、消炎、治疗痤疮 [27]
二羟基苯甲酸 原儿茶酸 乌蕨/冬青 抗氧化、抗肿瘤、神经保护 [28]
三羟基苯甲酸 没食子酸 五倍子/金缕梅 抗氧化、抗癌、抗菌、保护软骨、碳酸酐酶抑制剂、抗糖尿病、抗溃疡、组织蛋白酶D抑制剂 [29]
抗生素 聚酮类 四环素 链霉菌 治疗呼吸道、胃肠道和泌尿生殖道感染 [30]
大环内酯类 红霉素 糖多孢红霉菌 治疗呼吸道、皮肤和衣原体菌感染,治疗梅毒 [31]
表1  部分经典天然产物的功效
植物 提取部位 天然产物 提取方式
甘草 根部 甘草酸、光甘草定 水提取、醇提取
红豆杉 树皮 紫杉醇 乙醇、甲醇浸提
大黄 根部 大黄素 水提取、乙醇提取
丁香 花蕾 丁香酚 蒸馏提取、挥发油提取
当归 根部 川芎内酯、川芎酮 水提取、乙醇提取
葡萄柚 果皮 柚皮苷 挤压提取、冷榨提取
生姜 根部 姜辣素 水提取、乙醇提取
绿茶 茶多酚、儿茶素 水提取
长春花 种子、块茎 长春碱 乙醇、甲醇浸提
表2  部分植物天然产物的传统获取方式
图2  微生物细胞工厂类型
类型 名称 天然来源 底盘细胞 产量 报道年份 参考文献
萜烯类 青蒿酸 黄花蒿 酿酒酵母 25 g/L 2013 [34]
α-檀香烯 檀香 毕赤酵母 21.5 g/L 2022 [35]
(+)-瓦伦烯 柑橘 酿酒酵母 16.6 g/L 2022 [36]
佛术烯 圣罗勒 酿酒酵母 34.6 g/L 2021 [37]
原人参二醇 人参 酿酒酵母 15.88 g/L 2022 [38]
α-香树脂醇 甘草 酿酒酵母 1 g/L 2020 [39]
11-氧-β-香树脂醇 甘草 酿酒酵母 108.1 mg/L 2018 [40]
甘草次酸 甘草 酿酒酵母 36 mg/L 2018 [40]
齐墩果酸 女贞 酿酒酵母 1 132.9 mg/L 2023 [41]
甘草酸 甘草 酿酒酵母 5.98 mg/L 2021 [42]
三七皂苷Rg1 三七 酿酒酵母 1.95 g/L 2021 [43]
番茄红素 番茄 解脂耶氏酵母 17.6 g/L 2022 [44]
虾青素 胡萝卜 解脂耶氏酵母 3.3 g/L 2022 [45]
黄酮类 野黄芩苷 黄芩 解脂耶氏酵母 703 mg/L 2023 [46]
柚皮素 葡萄柚 酿酒酵母 1 129.44 mg/L 2023 [47]
圣草酚 柠檬 酿酒酵母 3.28 g/L 2021 [48]
甘草素 甘草 解脂耶氏酵母 62.4 mg/L 2021 [49]
淫羊藿苷 淫羊藿 酿酒酵母 130 μg/L 2023 [50]
葛根素 野葛 酿酒酵母 72.8 mg/L 2021 [51]
大豆苷元 大豆 酿酒酵母 85.4 mg/L 2021 [51]
生物碱 莨菪碱 茄科植物 酿酒酵母 480 μg/L 2020 [52]
东莨菪碱 茄科植物 酿酒酵母 172 μg/L 2020 [52]
文朵灵 长春花 酿酒酵母 149.3 μg/L 2022 [53]
长春质碱 长春花 毕赤酵母 2.57 mg/L 2023 [10]
S-去甲乌药碱 南天竹 酿酒酵母-树干毕赤酵母 11.5 mg/L 2023 [54]
蒂巴因 罂粟 酿酒酵母 7.8 μg/L 2015 [55]
诺斯卡品 罂粟 酿酒酵母 2.2 mg/L 2018 [56]
表3  酵母细胞工厂合成的部分天然产物
类型 名称 天然来源 产量 报道年份 参考文献
萜烯 柠檬烯 柑橘属果皮 3.6 g/L 2020 [57]
香叶醇 玫瑰 2.12 g/L 2021 [58]
乙酸香叶酯 玫瑰 10.36 g/L 2022 [59]
紫穗槐二烯 黄花蒿 30 g/L 2019 [60]
贝壳杉烯 贝壳杉 623.6 mg/L 2020 [61]
紫杉烯 红豆杉 1 g/L 2010 [62]
5α-羟化紫杉烯醇 红豆杉 58 mg/L 2010 [62]
黄酮 芹菜素 芹菜 109.7 mg/L 2019 [63]
芫花素 芫花 41.0 mg/L 2015 [64]
黄芩素 黄芩 367.8 mg/L 2022 [65]
松属素 五针松 525.8 mg/L 2016 [66]
染料木素 槐角 35.1 mg/L 2022 [67]
表4  大肠杆菌细胞工厂合成的部分天然产物
名称 结构类型 天然来源 产量 报道年份 参考文献
γ-氨基丁酸 氨基酸 广泛分布 45.6 g/L 2022 [68]
L-茶氨酸 氨基酸 茶叶 44.12 g/L 2023 [69]
血红素 铁卟啉 动物血液 309.18 mg/L 2021 [70]
β-胡萝卜素 四萜 胡萝卜 2.5 mg/g CDW 2023 [71]
虾青素 四萜 雨生红球藻/红发夫酵母 0.6 mg/g CDW 2023 [71]
表5  谷氨酸棒杆菌细胞工厂生产非必需氨基酸类的部分天然产物
图3  催化元件的挖掘和改造策略
图4  通过底盘细胞改造优化与代谢平衡调控构建高效细胞工厂
图5  生物逆合成途径预测流程
[1] Newman D J, Cragg G M. Natural products as sources of new drugs from 1981 to 2014. Journal of Natural Products, 2016, 79(3): 629-661.
doi: 10.1021/acs.jnatprod.5b01055 pmid: 26852623
[2] Zhang Q W, Lin L G, Ye W C. Techniques for extraction and isolation of natural products: a comprehensive review. Chinese Medicine, 2018, 13(1): 20.
doi: 10.1186/s13020-018-0177-x
[3] Nicolaou K C, Yang Z, Liu J J, et al. Total synthesis of taxol. Nature, 1994, 367(6464): 630-634.
doi: 10.1038/367630a0
[4] Bureau J A, Oliva M E, Dong Y M, et al. Engineering yeast for the production of plant terpenoids using synthetic biology approaches. Natural Product Reports, 2023, 40(12): 1822-1848.
doi: 10.1039/D3NP00005B
[5] Dinday S, Ghosh S. Recent advances in triterpenoid pathway elucidation and engineering. Biotechnology Advances, 2023, 68: 108214.
doi: 10.1016/j.biotechadv.2023.108214
[6] 林春草, 陈大伟, 戴均贵. 黄酮类化合物合成生物学研究进展. 药学学报, 2022, 57(5): 1322-1335.
Lin C C, Chen D W, Dai J G. Advances of synthetic biology of flavonoids. Acta Pharmaceutica Sinica, 2022, 57(5): 1322-1335.
[7] Llovet J M, Villanueva A, Lachenmayer A, et al. Advances in targeted therapies for hepatocellular carcinoma in the genomic era. Nature Reviews Clinical Oncology, 2015, 12(7): 408-424.
doi: 10.1038/nrclinonc.2015.103 pmid: 26054909
[8] 王旭东, 孙朝晖, 周龙, 等. 光甘草定的应用、提取分离及制剂方式的研究进展. 精细化工中间体, 2020, 50(6): 10-15.
Wang X D, Sun C H, Zhou L, et al. The application, extraction and separation and preparation methods for glabridin. Fine Chemical Intermediates, 2020, 50(6): 10-15.
[9] Tian T, Wang Y J, Huang J P, et al. Catalytic innovation underlies independent recruitment of polyketide synthases in cocaine and hyoscyamine biosynthesis. Nature Communications, 2022, 13(1): 4994.
doi: 10.1038/s41467-022-32776-1 pmid: 36008484
[10] Gao J C, Zuo Y M, Xiao F, et al. Biosynthesis of catharanthine in engineered Pichia pastoris. Nature Synthesis, 2023, 2: 231-242.
[11] 王华, 陶能国, 王长锋, 等. 椪柑精油及其主要抑菌组分对菌核青霉的抑制作用. 中国生物工程杂志, 2012, 32(3): 53-58.
Wang H, Tao N G, Wang C F, et al. The inhibitory effect of essential oil from Citrus reticulate blanco and their main pure compounds on Penicillium. China Biotechnology, 2012, 32(3): 53-58.
[12] Lei Y, Fu P, Jun X, et al. Pharmacological properties of geraniol: a review. Planta Medica, 2019, 85(1): 48-55.
doi: 10.1055/a-0750-6907 pmid: 30308694
[13] Wang J G, Xu C C, Wong Y K, et al. Artemisinin, the magic drug discovered from traditional Chinese medicine. Engineering, 2019, 5(1): 32-39.
[14] Zhang Y J, Wiese L, Fang H, et al. Synthetic biology identifies the minimal gene set required for paclitaxel biosynthesis in a plant chassis. Molecular Plant, 2023, 16(12): 1951-1961.
doi: 10.1016/j.molp.2023.10.016
[15] 杨薇, 周雍进, 刘武军, 等. 构建酿酒酵母工程菌合成香紫苏醇. 生物工程学报, 2013, 29(8): 1185-1192.
pmid: 24364354
Yang W, Zhou Y J, Liu W J, et al. Engineering Saccharomyces cerevisiae for sclareol production. Chinese Journal of Biotechnology, 2013, 29(8): 1185-1192.
pmid: 24364354
[16] 刘彬, 齐云. 甘草酸及甘草次酸的药理学研究进展. 国外医药(植物药分册), 2006, 21(3): 100-104.
Liu B, Qi Y. Pharmacological research progress of glycyrrhizic acid and glycyrrhetinic acid. Drugs & Clinic, 2006, 21(3): 100-104.
[17] Li M K, Ma M Y, Wu Z K, et al. Advances in the biosynthesis and metabolic engineering of rare ginsenosides. Applied Microbiology and Biotechnology, 2023, 107(11): 3391-3404.
doi: 10.1007/s00253-023-12549-6 pmid: 37126085
[18] Tang C, Chen Y, Bai S, et al. Advances in the study of structural modification and biological activities of oleanolic acid. Chinese Journal of Organic Chemistry, 2013, 33(1): 46.
doi: 10.6023/cjoc201207019
[19] Aneesh P A, Ajeeshkumar K K, Kumar Lekshmi R G, et al. Bioactivities of astaxanthin from natural sources, augmenting its biomedical potential: a review. Trends in Food Science & Technology, 2022, 125: 81-90.
[20] Khan U M, Sevindik M, Zarrabi A, et al. Lycopene: food sources, biological activities, and human health benefits. Oxidative Medicine and Cellular Longevity, 2021, 2021: 2713511.
[21] Chmiel M, Stompor-Goracy M. Promising role of the Scutellaria baicalensis root hydroxyflavone-baicalein in the prevention and treatment of human diseases. International Journal of Molecular Sciences, 2023, 24(5): 4732.
doi: 10.3390/ijms24054732
[22] Stabrauskiene J, Kopustinskiene D M, Lazauskas R, et al. Naringin and naringenin: their mechanisms of action and the potential anticancer activities. Biomedicines, 2022, 10(7): 1686.
doi: 10.3390/biomedicines10071686
[23] 曾华婷, 郭健, 陈彦. 淫羊藿素药理作用及其新型给药系统的研究进展. 中草药, 2020, 51(20): 5372-5380.
Zeng H T, Guo J, Chen Y. Research progress on pharmacology effects and new drug delivery system of icaritin. Chinese Traditional and Herbal Drugs, 2020, 51(20): 5372-5380.
[24] Novak B, Hudlicky T, Reed J, et al. Morphine synthesis and biosynthesis-an update. Current Organic Chemistry, 2000, 4(3): 343-362.
doi: 10.2174/1385272003376292
[25] Chen J, Fan F Y, Qu G, et al. Identification of Absidia orchidis steroid 11β-hydroxylation system and its application in engineering Saccharomyces cerevisiae for one-step biotransformation to produce hydrocortisone. Metabolic Engineering, 2020, 57: 31-42.
doi: 10.1016/j.ymben.2019.10.006
[26] Caputi L, Franke J, Farrow S C, et al. Missing enzymes in the biosynthesis of the anticancer drug vinblastine in Madagascar periwinkle. Science, 2018, 360(6394): 1235-1239.
doi: 10.1126/science.aat4100
[27] Jia X Q, Wang L, Zhao H Y, et al. The origin and evolution of salicylic acid signaling and biosynthesis in plants. Molecular Plant, 2023, 16(1): 245-259.
doi: 10.1016/j.molp.2022.12.002
[28] Lin H H, Chen J H, Huang C C, et al. Apoptotic effect of 3, 4-dihydroxybenzoic acid on human gastric carcinoma cells involving JNK/p 38 MAPK signaling activation. International Journal of Cancer, 2007, 120(11): 2306-2316.
doi: 10.1002/ijc.v120:11
[29] AL Zahrani N A, El-Shishtawy R M, Asiri A M. Recent developments of Gallic acid derivatives and their hybrids in medicinal chemistry: a review. European Journal of Medicinal Chemistry, 2020, 204: 112609.
doi: 10.1016/j.ejmech.2020.112609
[30] Herbst E, Lee A, Tang Y, et al. Heterologous catalysis of the final steps of tetracycline biosynthesis by Saccharomyces cerevisiae. ACS Chemical Biology, 2021, 16(8): 1425-1434.
doi: 10.1021/acschembio.1c00259 pmid: 34269557
[31] You D, Wang M M, Yin B C, et al. Precursor supply for erythromycin biosynthesis: engineering of propionate assimilation pathway based on propionylation modification. ACS Synthetic Biology, 2019, 8(2): 371-380.
doi: 10.1021/acssynbio.8b00396 pmid: 30657660
[32] Perez-Matas E, Hidalgo-Martinez D, Moyano E, et al. Overexpression of BAPT and DBTNBT genes in Taxus baccata in vitro cultures to enhance the biotechnological production of paclitaxel. Plant Biotechnology Journal, 2024, 22(1): 233-247.
doi: 10.1111/pbi.v22.1
[33] Nielsen J, Keasling J D. Engineering cellular metabolism. Cell, 2016, 164(6): 1185-1197.
doi: S0092-8674(16)30070-8 pmid: 26967285
[34] Paddon C J, Westfall P J, Pitera D J, et al. High-level semi-synthetic production of the potent antimalarial artemisinin. Nature, 2013, 496(7446): 528-532.
doi: 10.1038/nature12051
[35] Zuo Y M, Xiao F, Gao J C, et al. Establishing Komagataella phaffii as a cell factory for efficient production of sesquiterpenoid α-santalene. Journal of Agricultural and Food Chemistry, 2022, 70(26): 8024-8031.
doi: 10.1021/acs.jafc.2c02353
[36] Ye Z L, Huang Y L, Shi B, et al. Coupling cell growth and biochemical pathway induction in Saccharomyces cerevisiae for production of (+)-valencene and its chemical conversion to (+)-nootkatone. Metabolic Engineering, 2022, 72: 107-115.
doi: 10.1016/j.ymben.2022.03.005
[37] Deng X M, Shi B, Ye Z L, et al. Systematic identification of Ocimum sanctum sesquiterpenoid synthases and (-)-eremophilene overproduction in engineered yeast. Metabolic Engineering, 2022, 69: 122-133.
doi: 10.1016/j.ymben.2021.11.005
[38] Lim S H, Baek J I, Jeon B M, et al. CRISPRi-guided metabolic flux engineering for enhanced protopanaxadiol production in Saccharomyces cerevisiae. International Journal of Molecular Sciences, 2021, 22(21): 11836.
doi: 10.3390/ijms222111836
[39] Yu Y, Rasool A, Liu H R, et al. Engineering Saccharomyces cerevisiae for high yield production of α-amyrin via synergistic remodeling of α-amyrin synthase and expanding the storage pool. Metabolic Engineering, 2020, 62: 72-83.
doi: 10.1016/j.ymben.2020.08.010
[40] Zhu M, Wang C X, Sun W T, et al. Boosting 11-oxo-β-amyrin and glycyrrhetinic acid synthesis in Saccharomyces cerevisiae via pairing novel oxidation and reduction system from legume plants. Metabolic Engineering, 2018, 45: 43-50.
doi: 10.1016/j.ymben.2017.11.009
[41] Jin K, Shi X, Liu J H, et al. Combinatorial metabolic engineering enables the efficient production of ursolic acid and oleanolic acid in Saccharomyces cerevisiae. Bioresource Technology, 2023, 374: 128819.
doi: 10.1016/j.biortech.2023.128819
[42] Xu K, Zhao Y J, Ahmad N, et al. O-glycosyltransferases from Homo sapiens contributes to the biosynthesis of glycyrrhetic acid 3-O-mono-β-D-glucuronide and glycyrrhizin in Saccharomyces cerevisiae. Synthetic and Systems Biotechnology, 2021, 6(3): 173-179.
doi: 10.1016/j.synbio.2021.07.001
[43] Li X D, Wang Y M, Fan Z J, et al. High-level sustainable production of the characteristic protopanaxatriol-type saponins from Panax species in engineered Saccharomyces cerevisiae. Metabolic Engineering, 2021, 66: 87-97.
doi: 10.1016/j.ymben.2021.04.006
[44] Ma Y S, Liu N, Greisen P, et al. Removal of lycopene substrate inhibition enables high carotenoid productivity in Yarrowia lipolytica. Nature Communications, 2022, 13(1): 572.
doi: 10.1038/s41467-022-28277-w
[45] Zhu H Z, Jiang S, Wu J J, et al. Production of high levels of 3 S, 3' S-astaxanthin in Yarrowia lipolytica via iterative metabolic engineering. Journal of Agricultural and Food Chemistry, 2022, 70(8): 2673-2683.
doi: 10.1021/acs.jafc.1c08072
[46] Zhang P, Wei W P, Shang Y Z, et al. Metabolic engineering of Yarrowia lipolytica for high-level production of scutellarin. Bioresource Technology, 2023, 385: 129421.
doi: 10.1016/j.biortech.2023.129421
[47] Zhang Q, Yu S Q, Lyu Y B, et al. Systematically engineered fatty acid catabolite pathway for the production of (2 S)-naringenin in Saccharomyces cerevisiae. ACS Synthetic Biology, 2021, 10(5): 1166-1175.
doi: 10.1021/acssynbio.1c00002 pmid: 33877810
[48] Gao S, Xu X Y, Zeng W Z, et al. Efficient biosynthesis of (2 S)-eriodictyol from (2 S)-naringenin in Saccharomyces cerevisiae through a combination of promoter adjustment and directed evolution. ACS Synthetic Biology, 2020, 9(12): 3288-3297.
doi: 10.1021/acssynbio.0c00346
[49] Akram M, Rasool A, An T, et al. Metabolic engineering of Yarrowia lipolytica for liquiritigenin production. Chemical Engineering Science, 2021, 230: 116177.
doi: 10.1016/j.ces.2020.116177
[50] An T, Lin G Y, Liu Y, et al. De novo biosynthesis of anticarcinogenic icariin in engineered yeast. Metabolic Engineering, 2023, 80: 207-215.
doi: 10.1016/j.ymben.2023.10.003
[51] Liu Q L, Liu Y, Li G, et al. De novo biosynthesis of bioactive isoflavonoids by engineered yeast cell factories. Nature Communications, 2021, 12(1): 6085.
doi: 10.1038/s41467-021-26361-1
[52] Srinivasan P, Smolke C D. Biosynthesis of medicinal tropane alkaloids in yeast. Nature, 2020, 585(7826): 614-619.
doi: 10.1038/s41586-020-2650-9
[53] Gao D, Liu T F, Gao J C, et al. De novo biosynthesis of vindoline and catharanthine in Saccharomyces cerevisiae. BioDesign Research, 2022, 2022: 0002.
doi: 10.34133/bdr.0002 pmid: 37905202
[54] Gao M R, Zhao Y X, Yao Z Y, et al. Xylose and shikimate transporters facilitates microbial consortium as a chassis for benzylisoquinoline alkaloid production. Nature Communications, 2023, 14(1): 7797.
doi: 10.1038/s41467-023-43049-w
[55] Fossati E, Narcross L, Ekins A, et al. Synthesis of morphinan alkaloids in Saccharomyces cerevisiae. PLoS One, 2015, 10(4): e0124459.
doi: 10.1371/journal.pone.0124459
[56] Winzer T, Gazda V, He Z S, et al. A Papaver somniferum 10-gene cluster for synthesis of the anticancer alkaloid noscapine. Science, 2012, 336(6089): 1704-1708.
doi: 10.1126/science.1220757 pmid: 22653730
[57] Wu J H, Cheng S, Cao J Y, et al. Systematic optimization of limonene production in engineered Escherichia coli. Journal of Agricultural and Food Chemistry, 2019, 67(25): 7087-7097.
doi: 10.1021/acs.jafc.9b01427
[58] Wang X, Chen J M, Zhang J, et al. Engineering Escherichia coli for production of geraniol by systematic synthetic biology approaches and laboratory-evolved fusion tags. Metabolic Engineering, 2021, 66: 60-67.
doi: 10.1016/j.ymben.2021.04.008 pmid: 33865982
[59] Wang X, Zhang X Y, Zhang J, et al. Genetic and bioprocess engineering for the selective and high-level production of geranyl acetate in Escherichia coli. ACS Sustainable Chemistry & Engineering, 2022, 10(9): 2881-2889.
[60] Patil V, Santos C N S, Ajikumar P K, et al. Balancing glucose and oxygen uptake rates to enable high amorpha-4, 11-diene production in Escherichia coli via the methylerythritol phosphate pathway. Biotechnology and Bioengineering, 2021, 118(3): 1317-1329.
doi: 10.1002/bit.v118.3
[61] Sun Y W, Chen Z, Wang G Y, et al. De novo production of versatile oxidized kaurene diterpenes in Escherichia coli. Metabolic Engineering, 2022, 73: 201-213.
doi: 10.1016/j.ymben.2022.08.001
[62] Ajikumar P K, Xiao W H, Tyo K E J, et al. Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli. Science, 2010, 330(6000): 70-74.
doi: 10.1126/science.1191652 pmid: 20929806
[63] Thuan N H, Chaudhary A K, Van Cuong D, et al. Engineering co-culture system for production of apigetrin in Escherichia coli. Journal of Industrial Microbiology and Biotechnology, 2018, 45(3): 175-185.
doi: 10.1007/s10295-018-2012-x
[64] Lee H, Kim B G, Kim M, et al. Biosynthesis of two flavones, apigenin and genkwanin, in Escherichia coli. Journal of Microbiology and Biotechnology, 2015, 25(9): 1442-1448.
doi: 10.4014/jmb.1503.03011
[65] Ji D N, Li J H, Ren Y H, et al. Rational engineering in Escherichia coli for high-titer production of baicalein based on genome-scale target identification. Biotechnology and Bioengineering, 2022, 119(7): 1916-1925.
doi: 10.1002/bit.v119.7
[66] Cao W J, Ma W C, Wang X, et al. Enhanced pinocembrin production in Escherichia coli by regulating cinnamic acid metabolism. Scientific Reports, 2016, 6(1): 32640.
doi: 10.1038/srep32640
[67] Liu X, Li L L, Zhao G R. Systems metabolic engineering of Escherichia coli coculture for de novo production of genistein. ACS Synthetic Biology, 2022, 11(5): 1746-1757.
doi: 10.1021/acssynbio.1c00590
[68] Wei L, Zhao J H, wang Y R, et al. Engineering of Corynebacterium glutamicum for high-level γ-aminobutyric acid production from glycerol by dynamic metabolic control. Metabolic Engineering, 2022, 69: 134-146.
doi: 10.1016/j.ymben.2021.11.010
[69] Yang T W, Zhang D, Cai M M, et al. Combining protein and metabolic engineering strategies for high-level production of L-theanine in Corynebacterium glutamicum. Bioresource Technology, 2024, 394: 130200.
doi: 10.1016/j.biortech.2023.130200
[70] Ko Y J, Kim M, You S K, et al. Animal-free heme production for artificial meat in Corynebacterium glutamicum via systems metabolic and membrane engineering. Metabolic Engineering, 2021, 66: 217-228.
doi: 10.1016/j.ymben.2021.04.013
[71] Göttl V L, Pucker B, Wendisch V F, et al. Screening of structurally distinct lycopene β-cyclases for production of the cyclic C 40 carotenoids β-carotene and astaxanthin by Corynebacterium glutamicum. Journal of Agricultural and Food Chemistry, 2023, 71(20): 7765-7776.
doi: 10.1021/acs.jafc.3c01492
[72] 李法彬, 刘露, 杜燕, 等. 构建重组枯草芽孢杆菌催化制备D-对羟基苯甘氨酸. 中国生物工程杂志, 2019, 39(3): 75-86.
Li F B, Liu L, Du Y, et al. Construction of recombinant Bacillus subtilis as catalyst for preparing D- p-hydroxyphenylglycine. China Biotechnology, 2019, 39(3): 75-86.
[73] Tanaka K, Natsume A, Ishikawa S, et al. A new-generation of Bacillus subtilis cell factory for further elevated scyllo-inositol production. Microbial Cell Factories, 2017, 16(1): 67.
doi: 10.1186/s12934-017-0682-0 pmid: 28431560
[74] Song Y F, Guan Z, van Merkerk R, et al. Production of squalene in Bacillus subtilis by squalene synthase screening and metabolic engineering. Journal of Agricultural and Food Chemistry, 2020, 68(15): 4447-4455.
doi: 10.1021/acs.jafc.0c00375
[75] Yang S, Wang Y, Wei C B, et al. A new sRNA-mediated posttranscriptional regulation system for Bacillus subtilis. Biotechnology and Bioengineering, 2018, 115(12): 2986-2995.
doi: 10.1002/bit.26833 pmid: 30199104
[76] Jin P, Zhang L P, Yuan P H, et al. Efficient biosynthesis of polysaccharides chondroitin and heparosan by metabolically engineered Bacillus subtilis. Carbohydrate Polymers, 2016, 140: 424-432.
doi: 10.1016/j.carbpol.2015.12.065
[77] 吕雪芹, 武耀康, 林璐, 等. 枯草芽孢杆菌代谢工程改造的策略与工具. 生物工程学报, 2021, 37(5): 1619-1636.
Lv X Q, Wu Y K, Lin L, et al. Strategies and tools for metabolic engineering in Bacillus subtilis. Chinese Journal of Biotechnology, 2021, 37(5): 1619-1636.
[78] Wu Y K, Chen T C, Liu Y F, et al. Design of a programmable biosensor-CRISPRi genetic circuits for dynamic and autonomous dual-control of metabolic flux in Bacillus subtilis. Nucleic Acids Research, 2020, 48(2): 996-1009.
doi: 10.1093/nar/gkz1123
[79] Wu Y K, Li Y, Jin K, et al. CRISPR-dCas12a-mediated genetic circuit cascades for multiplexed pathway optimization. Nature Chemical Biology, 2023, 19(3): 367-377.
doi: 10.1038/s41589-022-01230-0 pmid: 36646959
[80] Yu W W, Jin K, Wu Y K, et al. A pathway independent multi-modular ordered control system based on thermosensors and CRISPRi improves bioproduction in Bacillus subtilis. Nucleic Acids Research, 2022, 50(11): 6587-6600.
doi: 10.1093/nar/gkac476
[81] 胡益波, 皮畅钰, 张哲, 等. 丝状真菌蛋白表达系统研究进展. 中国生物工程杂志, 2020, 40(5): 94-104.
Hu Y B, Pi C Y, Zhang Z, et al. Recent advances in protein expression system of filamentous fungi. China Biotechnology, 2020, 40(5): 94-104.
[82] Zhgun A A, Nuraeva G K, Dumina M V, et al. 1, 3-diaminopropane and spermidine upregulate lovastatin production and expression of lovastatin biosynthetic genes in Aspergillus terreus via LaeA regulation. Applied Biochemistry and Microbiology, 2019, 55(3): 243-254.
doi: 10.1134/S0003683819020170
[83] Raja H A, Miller A N, Pearce C J, et al. Fungal identification using molecular tools: a primer for the natural products research community. Journal of Natural Products, 2017, 80(3): 756-770.
doi: 10.1021/acs.jnatprod.6b01085 pmid: 28199101
[84] Xiao M L, Wang Y M, Wang Y, et al. Repurposing the cellulase workhorse Trichoderma reesei as a ROBUST chassis for efficient terpene production. Green Chemistry, 2023, 25(18): 7362-7371.
doi: 10.1039/D3GC01770B
[85] Cardozo K H M, Guaratini T, Barros M P, et al. Metabolites from algae with economical impact. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2007, 146(1-2): 60-78.
doi: 10.1016/j.cbpc.2006.05.007
[86] Ratha S K, Prasanna R. Bioprospecting microalgae as potential sources of “Green Energy” -challenges and perspectives (review). Applied Biochemistry and Microbiology, 2012, 48(2): 109-125.
doi: 10.1134/S000368381202010X
[87] Specht E, Miyake-Stoner S, Mayfield S. Micro-algae come of age as a platform for recombinant protein production. Biotechnology Letters, 2010, 32(10): 1373-1383.
doi: 10.1007/s10529-010-0326-5 pmid: 20556634
[88] Qiao Y, Wang W H, Lu X F. Engineering cyanobacteria as cell factories for direct trehalose production from CO2. Metabolic Engineering, 2020, 62: 161-171.
doi: S1096-7176(20)30134-8 pmid: 32898716
[89] Tan C L, Tao F, Xu P. Direct carbon capture for the production of high-performance biodegradable plastics by cyanobacterial cell factories. Green Chemistry, 2022, 24(11): 4470-4483.
doi: 10.1039/D1GC04188F
[90] Gao X, Gao F, Liu D, et al. Engineering the methylerythritol phosphate pathway in cyanobacteria for photosynthetic isoprene production from CO2. Energy & Environmental Science, 2016, 9(4): 1400-1411.
[91] Zhao Y, Liang F Y, Xie Y M, et al. Oxetane ring formation in taxol biosynthesis is catalyzed by a bifunctional cytochrome P 450 enzyme. Journal of the American Chemical Society, 2024, 146(1): 801-810.
doi: 10.1021/jacs.3c10864
[92] 崔颖璐, 吴边. 符合工程化需求的生物元件设计. 中国科学院院刊, 2018, 33(11): 1150-1157.
Cui Y L, Wu B. Biological components design for engineering requirements. Bulletin of Chinese Academy of Sciences, 2018, 33(11): 1150-1157.
[93] Zhao E M, Zhang Y F, Mehl J, et al. Optogenetic regulation of engineered cellular metabolism for microbial chemical production. Nature, 2018, 555(7698): 683-687.
doi: 10.1038/nature26141
[94] Lalwani M A, Zhao E M, Wegner S A, et al. The Neurospora crassa inducible Q system enables simultaneous optogenetic amplification and inversion in Saccharomyces cerevisiae for bidirectional control of gene expression. ACS Synthetic Biology, 2021, 10(8): 2060-2075.
doi: 10.1021/acssynbio.1c00229 pmid: 34346207
[95] Shen B, Zhou P P, Jiao X, et al. Fermentative production of vitamin E tocotrienols in Saccharomyces cerevisiae under cold-shock-triggered temperature control. Nature Communications, 2020, 11(1): 5155.
doi: 10.1038/s41467-020-18958-9 pmid: 33056995
[96] Lv Y K, Gu Y, Xu J L, et al. Coupling metabolic addiction with negative autoregulation to improve strain stability and pathway yield. Metabolic Engineering, 2020, 61: 79-88.
doi: S1096-7176(20)30093-8 pmid: 32445959
[97] Srinivasan P, Smolke C D. Engineering cellular metabolite transport for biosynthesis of computationally predicted tropane alkaloid derivatives in yeast. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(25): e2104460118.
[98] Yu T, Liu Q L, Wang X, et al. Metabolic reconfiguration enables synthetic reductive metabolism in yeast. Nature Metabolism, 2022, 4(11): 1551-1559.
doi: 10.1038/s42255-022-00654-1 pmid: 36302903
[99] Luo S S, Diehl C, He H, et al. Construction and modular implementation of the THETA cycle for synthetic CO2 fixation. Nature Catalysis, 2023, 6(12): 1228-1240.
doi: 10.1038/s41929-023-01079-z
[100] Gao Y, Li F, Luo Z S, et al. Modular assembly of an artificially concise biocatalytic cascade for the manufacture of phenethylisoquinoline alkaloids. Nature Communications, 2024, 15(1): 30.
doi: 10.1038/s41467-023-44420-7
[101] 张震, 曾雪城, 秦磊, 等. 微生物细胞工厂的智能设计进展. 化工学报, 2021, 72(12): 6093-6108.
doi: 10.11949/0438-1157.20211163
Zhang Z, Zeng X C, Qin L, et al. Intelligent design of microbial cell factory. CIESC Journal, 2021, 72(12): 6093-6108.
doi: 10.11949/0438-1157.20211163
[1] 吴晓燕, 陈方. 二氧化碳生物转化技术发展现状与趋势分析[J]. 中国生物工程杂志, 2024, 44(1): 128-141.
[2] 魏珣, 张娟, 江易林, 赵伊琳, 陈菲菲, 安学丽, 吴锁伟, 龙艳, 万向元. 生物农业前沿技术研究进展[J]. 中国生物工程杂志, 2024, 44(1): 41-51.
[3] 左锟澜, 邹诗施, 吴宗震, 国原源, 徐雁龙, 刘欢. 病原体相关合成生物学的生物安全风险和应对策略研究*[J]. 中国生物工程杂志, 2023, 43(9): 120-130.
[4] 洪霞, 田开仁, 乔建军, 李艳妮. 基因编码型生物传感器在微生物细胞工厂中的应用进展*[J]. 中国生物工程杂志, 2023, 43(9): 62-76.
[5] 付萌萌, 苏丹丹, 左锟澜, 吴宗震, 李思思, 徐雁龙, 刘欢. 人体免疫相关的合成生物学生物安全风险和应对策略研究*[J]. 中国生物工程杂志, 2023, 43(6): 125-132.
[6] 宁峻涛, 邹诗施, 左锟澜, 吴宗震, 李晶, 徐雁龙, 刘欢. 合成生物活性物质的生物安全风险和应对策略研究*[J]. 中国生物工程杂志, 2023, 43(2/3): 180-189.
[7] 郭彦彤,刘仲明,张海燕,张宝. 分子即时检测(POCT)技术及其在新发传染病中的应用*[J]. 中国生物工程杂志, 2022, 42(9): 50-57.
[8] 贾男,臧国伟,李春,王颖. 辅因子在微生物细胞工厂中的代谢调控与应用*[J]. 中国生物工程杂志, 2022, 42(7): 79-89.
[9] 赵赤鸿,苏丹丹,厉春,吴宗震,左锟澜,徐雁龙,刘欢. 总体国家安全观下合成生物学风险和应对策略研究*[J]. 中国生物工程杂志, 2022, 42(12): 120-128.
[10] 张耀,邱晓曼,孙浩,郭蕾,洪厚胜. 酿酒酵母的工业化应用[J]. 中国生物工程杂志, 2022, 42(1/2): 26-36.
[11] 郭芳,张良,冯旭东,李春. 植物源UDP-糖基转移酶及其分子改造*[J]. 中国生物工程杂志, 2021, 41(9): 78-91.
[12] 马丽丽,易盼盼,敖妮花,焦洪涛,雷瑞鹏,刘欢. 基于学科类别和富集分析的生物安全研究领域学科交叉研究*[J]. 中国生物工程杂志, 2021, 41(12): 116-124.
[13] 吴晓燕,陈方,丁陈君,孙裕彤. 全球生物经济现状、趋势与融资前景分析*[J]. 中国生物工程杂志, 2021, 41(10): 116-126.
[14] 刘啸尘, 范代娣, 杨帆, 武占省. 人参皂苷化合物生物合成进展 *[J]. 中国生物工程杂志, 2021, 41(1): 80-93.
[15] 王小理. 生物安全时代:新生物科技变革与国家安全治理*[J]. 中国生物工程杂志, 2020, 40(9): 95-109.