Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2024, Vol. 44 Issue (1): 41-51    DOI: 10.13523/j.cb.2312104
生物经济核心产业专题     
生物农业前沿技术研究进展
魏珣,张娟,江易林,赵伊琳,陈菲菲,安学丽,吴锁伟,龙艳,万向元*()
北京科技大学生物农业研究院 北京 100083
Research Progress of Advanced Technologies in Biological Agriculture
Xun WEI,Juan ZHANG,Yilin JIANG,Yilin ZHAO,Feifei CHEN,Xueli AN,Suowei WU,Yan LONG,Xiangyuan WAN*()
Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100083, China
 全文: PDF(1262 KB)   HTML
摘要:

生物农业是利用现代生物技术提高传统农业生产效率和可持续性的新模式、新业态,既是国际农业竞争的制高点,也是我国生物经济发展的重要板块。近年来,基因工程、蛋白质工程、酶工程、发酵工程等现代生物技术手段在开发研制高产优质新品种、高效环保肥料、健康绿色饲料以及安全和低残留农药等方面取得了一定进展,但在理论、技术以及商业化方面还存在诸多瓶颈。面向未来全面推进乡村振兴和加快建设农业强国的战略需求,介绍生物农业前沿技术创新进展,针对生物农业发展面临的五大挑战提出相应的对策和建议,以期为我国未来农业发展提供借鉴与参考。

关键词: 农业生物技术生物育种生物肥料生物饲料生物农药生物安全    
Abstract:

Biological agriculture, a new model utilizing modern biotechnology to enhance the production efficiency and sustainability of traditional agriculture, is both a strategic high ground in international agricultural competition and a crucial sector for China’s bioeconomy. In recent years, modern biotechnological approaches such as genetic engineering, protein engineering, enzyme engineering, and fermentation engineering have made certain progress in developing new varieties with high yield and high quality, efficient and environmentally-friendly fertilizers, healthy and green feed, as well as safe pesticides with low residues. However, there are still numerous bottlenecks in terms of theory, technology, and commercialization. In this paper, addressing the strategic needs of comprehensive rural revitalization and the accelerated construction of an agricultural powerhouse for the future, the innovative advances in advanced technologies in biological agriculture are reviewed. Strategies and suggestions in response to the five major challenges facing the development of biological agriculture are proposed, aiming to provide insights and references for the future development of agriculture in China.

Key words: Agricultural biotechnology    Biological breeding    Biofertilizer    Biological feed    Biopesticide    Biosafety
收稿日期: 2024-01-06 出版日期: 2024-02-04
ZTFLH:  S188  
通讯作者: * 电子信箱:wanxiangyuan@ustb.edu.cn   
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
魏珣
张娟
江易林
赵伊琳
陈菲菲
安学丽
吴锁伟
龙艳
万向元

引用本文:

魏珣, 张娟, 江易林, 赵伊琳, 陈菲菲, 安学丽, 吴锁伟, 龙艳, 万向元. 生物农业前沿技术研究进展[J]. 中国生物工程杂志, 2024, 44(1): 41-51.

Xun WEI, Juan ZHANG, Yilin JIANG, Yilin ZHAO, Feifei CHEN, Xueli AN, Suowei WU, Yan LONG, Xiangyuan WAN. Research Progress of Advanced Technologies in Biological Agriculture. China Biotechnology, 2024, 44(1): 41-51.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2312104        https://manu60.magtech.com.cn/biotech/CN/Y2024/V44/I1/41

图1  生物农业的内涵与外延
图2  未来生物农业展望
[1] Zhang H, Zhou J F, Kan Y, et al. A genetic module at one locus in rice protects chloroplasts to enhance thermotolerance. Science, 2022, 376(6599): 1293-1300.
doi: 10.1126/science.abo5721 pmid: 35709289
[2] Li S, Tian Y H, Wu K, et al. Modulating plant growth-metabolism coordination for sustainable agriculture. Nature, 2018, 560(7720): 595-600.
doi: 10.1038/s41586-018-0415-5
[3] Wu K, Wang S S, Song W Z, et al. Enhanced sustainable green revolution yield via nitrogen-responsive chromatin modulation in rice. Science, 2020, 367(6478): eaaz2046.
[4] Wang H W, Sun S L, Ge W Y, et al. Horizontal gene transfer of Fhb 7 from fungus underlies Fusarium head blight resistance in wheat. Science, 2020, 368(6493): eaba5435.
doi: 10.1126/science.aba5435
[5] Wang N, Tang C L, Fan X, et al. Inactivation of a wheat protein kinase gene confers broad-spectrum resistance to rust fungi. Cell, 2022, 185(16): 2961-2974, e19.
doi: 10.1016/j.cell.2022.06.027
[6] Chen W K, Chen L, Zhang X, et al. Convergent selection of a WD 40 protein that enhances grain yield in maize and rice. Science, 2022, 375(6587): eabg7985.
doi: 10.1126/science.abg7985
[7] Huang Y C, Wang H H, Zhu Y D, et al. THP9 enhances seed protein content and nitrogen-use efficiency in maize. Nature, 2022, 612(7939): 292-300.
doi: 10.1038/s41586-022-05441-2
[8] De Souza A P, Burgess S J, Doran L, et al. Soybean photosynthesis and crop yield are improved by accelerating recovery from photoprotection. Science, 2022, 377(6608): 851-854.
doi: 10.1126/science.adc9831 pmid: 35981033
[9] Huang G, Wu Z G, Percy R G, et al. Genome sequence of Gossypium herbaceum and genome updates of Gossypium arboreum and Gossypium hirsutum provide insights into cotton A-genome evolution. Nature Genetics, 2020, 52(5): 516-524.
doi: 10.1038/s41588-020-0607-4 pmid: 32284579
[10] Gao M J, He Y, Yin X, et al. Ca2+ sensor-mediated ROS scavenging suppresses rice immunity and is exploited by a fungal effector. Cell, 2021, 184(21): 5391-5404, e17.
doi: 10.1016/j.cell.2021.09.009
[11] Nagai K, Mori Y, Ishikawa S, et al. Antagonistic regulation of the gibberellic acid response during stem growth in rice. Nature, 2020, 584(7819): 109-114.
doi: 10.1038/s41586-020-2501-8
[12] He Q, Tang S, Zhi H, et al. A graph-based genome and pan-genome variation of the model plant Setaria. Nature Genetics, 2023, 55(7): 1232-1242.
doi: 10.1038/s41588-023-01423-w
[13] Li C Y, Wang W B, Pan Y P, et al. Germplasm sources, genetic richness, and population differentiation of modern Chinese soybean cultivars based on pedigree integrated with genomic-marker analysis. Frontiers in Plant Science, 2022, 13: 945839.
doi: 10.3389/fpls.2022.945839
[14] You J Q, Liu Z P, Qi Z Y, et al. Regulatory controls of duplicated gene expression during fiber development in allotetraploid cotton. Nature Genetics, 2023, 55(11): 1987-1997.
doi: 10.1038/s41588-023-01530-8 pmid: 37845354
[15] Zhang L Y, Ding Y Q, Xu J X, et al. Selection signatures in Chinese Sorghum reveals its unique liquor-making properties. Frontiers in Plant Science, 2022, 13: 923734.
doi: 10.3389/fpls.2022.923734
[16] Sha G, Sun P, Kong X J, et al. Genome editing of a rice CDP-DAG synthase confers multipathogen resistance. Nature, 2023, 618(7967): 1017-1023.
doi: 10.1038/s41586-023-06205-2
[17] Zhang H L, Yu F F, Xie P, et al. A Gγ protein regulates alkaline sensitivity in crops. Science, 2023, 379(6638): eade8416.
doi: 10.1126/science.ade8416
[18] Yu H, Lin T, Meng X B, et al. A route to de novo domestication of wild allotetraploid rice. Cell, 2021, 184(5): 1156-1170, e14.
doi: 10.1016/j.cell.2021.01.013
[19] Zhang F, Wang C C, Li M, et al. The landscape of gene-CDS-haplotype diversity in rice: properties, population organization, footprints of domestication and breeding, and implications for genetic improvement. Molecular Plant, 2021, 14(5): 787-804.
doi: 10.1016/j.molp.2021.02.003 pmid: 33578043
[20] Wang K L, Ali Abid M, Rasheed A, et al. DNNGP, a deep neural network-based method for genomic prediction using multi-omics data in plants. Molecular Plant, 2023, 16(1): 279-293.
doi: 10.1016/j.molp.2022.11.004
[21] Wang L M, Shen B R, Li B D, et al. A synthetic photorespiratory shortcut enhances photosynthesis to boost biomass and grain yield in rice. Molecular Plant, 2020, 13(12): 1802-1815.
doi: 10.1016/j.molp.2020.10.007 pmid: 33075506
[22] Wei X, Qiu J, Yong K C, et al. A quantitative genomics map of rice provides genetic insights and guides breeding. Nature Genetics, 2021, 53(2): 243-253.
doi: 10.1038/s41588-020-00769-9 pmid: 33526925
[23] Zhu W C, Han R, Shang X Y, et al. The CropGPT project: a call for a global, coordinated effort in precision design breeding driven by AI using biological big-data. Molecular Plant, 2023, DOI: 10.1016/j.molp.2023.12.015.
doi: 10.1016/j.molp.2023.12.015
[24] Okur N. A review: bio-fertilizers-power of beneficial microorganisms in soils. Biomedical Journal of Scientific & Technical Research, 2018, 4(4): 4028-4029.
[25] Rai P K, Rai A, Sharma N K, et al. Limitations of biofertilizers and their revitalization through nanotechnology. Journal of Cleaner Production, 2023, 418: 138194.
doi: 10.1016/j.jclepro.2023.138194
[26] 元文霞, 毕影东, 樊超, 等. 我国生物肥料的发展现状与应用. 农业科技通讯, 2022(12): 4-9.
Yuan W X, Bi Y D, Fan C, et al. Development status and application of bio-fertilizer in China. Bulletin of Agricultural Science and Technology, 2022(12): 4-9.
[27] 曲雪静. 关于微生物肥料研究现状及发展趋势. 生物技术世界, 2016, 13(4): 50-51.
Qu X J. Research status and development trend of microbial fertilizer. Biotech World, 2016, 13(4): 50-51.
[28] 范丙全. 我国生物肥料研究与应用进展. 植物营养与肥料学报, 2017, 23(6): 1602-1613.
Fan B Q. Advances in biofertilizer research and development in China. Journal of Plant Nutrition and Fertilizer, 2017, 23(6): 1602-1613.
[29] Kumar S, Sindhu S S, Kumar R. Biofertilizers: an ecofriendly technology for nutrient recycling and environmental sustainability. Current Research in Microbial Sciences, 2022, 3: 100094.
doi: 10.1016/j.crmicr.2021.100094
[30] 于健. 微生物肥在番茄基质栽培中的应用效果研究. 兰州: 甘肃农业大学, 2016.
Yu J. Effects of microbial fertilizer partly replace chemical fertilizer on tomato(Lycopersicon esculentum Mill) in non-cultivated land greenhouse. Lanzhou: Gansu Agricultural University, 2016.
[31] 王春勇, 李贺, 王耐红, 等. 生物肥料基肥对生姜生长及姜黄素、姜辣素成分含量的影响. 中国瓜菜, 2023, 36(7): 111-116.
Wang C Y, Li H, Wang N H, et al. Effects of bio-fertilizer base fertilizer on ginger growth and composition of curcumin and gingerol. China Cucurbits and Vegetables, 2023, 36(7): 111-116.
[32] Zhang J, Cook J, Nearing J T, et al. Harnessing the plant microbiome to promote the growth of agricultural crops. Microbiological Research, 2021, 245: 126690.
doi: 10.1016/j.micres.2020.126690
[33] 安树义, 李广忠, 周育忠, 等. 浅谈生物肥的特点应用技术及前景展望. 农业环境与发展, 2001, 18(2): 43-44, 48.
An S Y, Li G Z, Zhou Y Z, et al. Discussion on the characteristics, application technology and prospect of biological fertilizer. Agro-Environment and Development, 2001, 18(2): 43-44, 48.
[34] 涂涛, 罗会颖, 姚斌. 蛋白质工程在饲料用酶研发中的应用研究进展. 合成生物学, 2022, 3(3): 487-499.
doi: 10.12211/2096-8280.2022-027
Tu T, Luo H Y, Yao B. Progress in the application of protein engineering in the developing of feed enzymes. Synthetic Biology Journal, 2022, 3(3): 487-499.
doi: 10.12211/2096-8280.2022-027
[35] Ma L T, Wang L F, Zhang Z X, et al. Research progress of biological feed in beef cattle. Animals, 2023, 13(16): 2662.
doi: 10.3390/ani13162662
[36] Missotten J A, Michiels J, Degroote J, et al. Fermented liquid feed for pigs: an ancient technique for the future. Journal of Animal Science and Biotechnology, 2015, 6(1): 4.
doi: 10.1186/2049-1891-6-4 pmid: 25838899
[37] Van Zyl W F, Deane S M, Dicks L M T. Molecular insights into probiotic mechanisms of action employed against intestinal pathogenic bacteria. Gut Microbes, 2020, 12(1): 1831339.
doi: 10.1080/19490976.2020.1831339
[38] Ren D Y, Wang D, Liu H Y, et al. Two strains of probiotic Lactobacillus enhance immune response and promote naive T cell polarization to Th1. Food and Agricultural Immunology, 2019, 30(1): 281-295.
doi: 10.1080/09540105.2019.1579785
[39] Canibe N, Jensen B B. Fermented and nonfermented liquid feed to growing pigs: effect on aspects of gastrointestinal ecology and growth performance. Journal of Animal Science, 2003, 81(8): 2019-2031.
pmid: 12926784
[40] Sugiharto S, Ranjitkar S. Recent advances in fermented feeds towards improved broiler chicken performance, gastrointestinal tract microecology and immune responses: a review. Animal Nutrition, 2019, 5(1): 1-10.
doi: 10.1016/j.aninu.2018.11.001 pmid: 30899804
[41] Sugiharto S. Role of nutraceuticals in gut health and growth performance of poultry. Journal of the Saudi Society of Agricultural Sciences, 2016, 15(2): 99-111.
doi: 10.1016/j.jssas.2014.06.001
[42] Sugiharto S, Yudiarti T, Isroli I, et al. Dietary supplementation of probiotics in poultry exposed to heat stress: a review. Annals of Animal Science, 2017, 17(3): 591-604.
doi: 10.1515/aoas-2016-0062
[43] 吴小燕, 郭春华, 王之盛, 等. 微生物发酵饲料对泌乳奶牛生产性能和饲粮养分表观消化率的影响. 动物营养学报, 2014, 26(8): 2296-2302.
Wu X Y, Guo C H, Wang Z S, et al. Microbiology fermented feed: effects on performance and nutrient apparent digestibility of lactating dairy cows. Chinese Journal of Animal Nutrition, 2014, 26(8): 2296-2302.
[44] Wang J, Han Y, Zhao J Z, et al. Consuming fermented distillers’ dried grains with solubles (DDGS) feed reveals a shift in the faecal microbiota of growing and fattening pigs using 454 pyrosequencing. Journal of Integrative Agriculture, 2017, 16(4): 900-910.
doi: 10.1016/S2095-3119(16)61523-X
[45] Yan J S, Zhou B, Xi Y M, et al. Fermented feed regulates growth performance and the cecal microbiota community in geese. Poultry Science, 2019, 98(10): 4673-4684.
doi: 10.3382/ps/pez169 pmid: 30993344
[46] Shi C Y, Zhang Y, Lu Z Q, et al. Solid-state fermentation of corn-soybean meal mixed feed with Bacillus subtilis and Enterococcus faecium for degrading antinutritional factors and enhancing nutritional value. Journal of Animal Science and Biotechnology, 2017, 8: 50.
doi: 10.1186/s40104-017-0184-2
[47] Lyberg K, Lundh T, Pedersen C, et al. Influence of soaking, fermentation and phytase supplementation on nutrient digestibility in pigs offered a grower diet based on wheat and barley. Animal Science, 2006, 82(6): 853-858.
doi: 10.1017/ASC2006109
[48] 黎高翔. 中国酶工程的兴旺与崛起. 生物工程学报, 2015, 31(6): 805-819.
Li G X. The rise of enzyme engineering in China. Chinese Journal of Biotechnology, 2015, 31(6): 805-819.
[49] 白林彬, 吕新年, 解玉怀, 等. 常用饲用复合酶制剂及其作用机理. 山东畜牧兽医, 2016, 37(10): 61-64.
Bai L B, Lv X N, Xie Y H, et al. Common compound enzyme preparations for feed and their mechanism of action. Shandong Journal of Animal Science and Veterinary Medicine, 2016, 37(10): 61-64.
[50] 何文利, 李小凡, 贾丽琼. 生物技术在饲料业中的应用. 内蒙古林业, 2004(5): 38-39.
He W L, Li X F, Jia L Q. Application of biotechnology in feed industry. Journal of Inner Mongolia Forestry, 2004(5): 38-39.
[51] 吴志青, 吴华东. 饲用复合酶制剂的作用机理及其在动物生产中的应用. 贵州畜牧兽医, 2012, 36(1): 21-24.
Wu Z Q, Wu H D. Mechanisms and application of feed compound enzyme in animal production. Guizhou Journal of Animal Husbandry & Veterinary Medicine, 2012, 36(1): 21-24.
[52] 刘小平, 红燕, 黎晓玲. 复合酶制剂对肉牛生长性能、氨气排放及粪中重金属含量的影响. 中国饲料, 2023(18): 53-56.
Liu X P, Hong Y, Li X L. Effects of compound enzyme preparations on growth performance, ammonia emissions, and heavy metal content in feces of beef cattle. China Feed, 2023(18): 53-56.
[53] 王文兵, 张钰爽, 余倩云, 等. 日粮添加复合酶制剂对断奶仔猪生长性能、免疫功能及养分消化率的影响. 中国饲料, 2023(12): 44-47.
Wang W B, Zhang Y S, Yu Q Y, et al. Effects of adding complex enzyme preparations to the diet on growth performance, immune function, and nutrient digestibility of weaned piglets. China Feed, 2023(12): 44-47.
[54] 郭亚丽, 庄佳荣, 刁青青, 等. 复合酶制剂对生长蛋鸡粗蛋白代谢率、肠道发育以及消化酶活性的影响. 山东畜牧兽医, 2023, 44 (9): 5-9.
Guo Y L, Zhuang J R, Diao Q Q, et al. The effects of composite enzyme preparations on crude protein metabolism rate, intestinal development, and digestive enzyme activity in growing laying hens. Shandong Journal of Animal Science and Veterinary Medicine, 2023, 44 (9): 5-9.
[55] Wu S D, Zhang F R, Huang Z M, et al. Effects of the antimicrobial peptide cecropin AD on performance and intestinal health in weaned piglets challenged with Escherichia coli. Peptides, 2012, 35(2): 225-230.
doi: 10.1016/j.peptides.2012.03.030
[56] Zhao F, Yang N, Wang X M, et al. In vitro /vivo mechanism of action of MP1102 with low/nonresistance against Streptococcus suis type 2 strain CVCC 3928. Frontiers in Cellular and Infection Microbiology, 2019, 9: 48.
doi: 10.3389/fcimb.2019.00048 pmid: 30863725
[57] 徐善忠, 肖明徽, 韦赵海, 等. 性信息素交配干扰技术在水稻害虫防治中的应用. 中国植保导刊, 2019, 39(8): 48-51.
Xu S Z, Xiao M H, Wei Z H, et al. Application of sex hormone mating disruption techniques in controlling of rice insect pests. China Plant Protection, 2019, 39(8): 48-51.
[58] 魏然, 吴俊彦, 张习文, 等. 昆虫信息素应用于害虫绿色防控的研究进展. 黑龙江农业科学, 2022(12): 95-99.
Wei R, Wu J Y, Zhang X W, et al. Research progress on application of insect pheromone to green prevention and control of pest. Heilongjiang Agricultural Sciences, 2022(12): 95-99.
[59] 李燕羽, 穆海亮, 胡铁源, 等. 生物化学农药S-烯虫酯防治储粮害虫研究进展. 中国粮油学报, 2023, DOI:10.20048/j.cnki.issn.1003-0174.000221.
doi: 10.20048/j.cnki.issn.1003-0174.000221
Li Y Y, Mu H L, Hu T Y, et al. Advances in research and development of biochemical pesticides of methoprene and control of stored-product insects. Journal of the Chinese Cereals and Oils Association, 2023, DOI:10.20048/j.cnki.issn.1003-0174.000221.
doi: 10.20048/j.cnki.issn.1003-0174.000221
[60] Lengai G M W, Muthomi J W, Mbega E R. Phytochemical activity and role of botanical pesticides in pest management for sustainable agricultural crop production. Scientific African, 2020, 7: e00239.
doi: 10.1016/j.sciaf.2019.e00239
[61] 何军, 马志卿, 张兴. 植物源农药概述. 西北农林科技大学学报(自然科学版), 2006, 34(9): 79-85.
He J, Ma Z Q, Zhang X. Review of botanical pesticide. Journal of Northwest Sci-Tech University of Agriculture and Forestry (Natural Science Edition), 2006, 34(9): 79-85.
[62] 刘潇. 生物化学农药发展现状及趋势分析. 化学工业, 2021, 39(1): 53-58.
Liu X. Development status and trend analysis of biochemical pesticides. Chemical Industry, 2021, 39(1): 53-58.
[63] 高成华. 微生物杀虫剂苏云金芽孢杆菌(Bt)的研究现状及应用. 农业工程技术(温室园艺), 2015, 35(16): 64-66.
Gao C H. Research status and application of microbial insecticide Bacillus thuringiensis (bt). Agriculture Engineering Technology (Greenhouse & Horticulture), 2015, 35(16): 64-66.
[64] Wang M L, Geng L L, Sun X X, et al. Screening of Bacillus thuringiensis strains to identify new potential biocontrol agents against Sclerotinia sclerotiorum and Plutella xylostella in Brassica campestris L. Biological Control, 2020, 145: 104262.
doi: 10.1016/j.biocontrol.2020.104262
[65] 刘刚. 北京市以瓢虫治虫取得显著成果. 农药市场信息, 2015(4): 51.
Liu G. Beijing has achieved significant results in controlling ladybugs. Pesticide Market News, 2015(4): 51.
[66] 何笙, 吴晓云, 郑金竹, 等. 丽蚜小蜂防治设施番茄烟粉虱效果研究. 安徽农业科学, 2013, 41(14): 6244-6245, 6248.
He S, Wu X Y, Zheng J Z, et al. A study of control effect of Bemisia tabaci (Gennadius) on greenhouse tomatoes using parasitoid Encarsia formosa gahan. Journal of Anhui Agricultural Sciences, 2013, 41(14): 6244-6245, 6248.
[67] 李丽娟, 鲁新, 刘宏伟, 等. 捕食螨防治大棚蔬菜叶螨效果的初步研究. 吉林蔬菜, 2008(1): 72-73.
Li L J, Lu X, Liu H W, et al. Preliminary study on the control effect of predatory mites on Tetranychus urticae in greenhouse vegetables. Jilin Shucai, 2008(1): 72-73.
[68] Rand Corporation. Information and biological revolutions. [2024-01-06]. https://www.rand.org/pubs/monograph_reports/MR1139.html.
[69] 刘助仁. 世界生物技术产业的发展现状. 国际资料信息, 2005(8): 7-9.
Liu Z R. Development status of biotechnology industry in the world. Guoji Ziliao Xinxi, 2005(8): 7-9.
[70] 丁陈君, 陈方, 张志强. 美国生物安全战略与计划体系及其启示与建议. 世界科技研究与发展, 2020, 42(3): 253-264.
Ding C J, Chen F, Zhang Z Q. The biosecurity strategy and planning framework of the United States and its enlightenments and suggestions. World Sci-Tech R & D, 2020, 42(3): 253-264.
[71] Departments of Defense, Health and Human Services, Homeland Security, et al. National biodefense strategy. [2024-01-06]. https://trumpwhitehouse.archives.gov/wp-content/uploads/2018/09/National-Biodefense-Strategy.pdf.
[1] 李秋阳, 孙文涛, 秦磊, 吕波, 李春. 天然产物生物合成与微生物制造的挑战*[J]. 中国生物工程杂志, 2024, 44(1): 72-87.
[2] 左锟澜, 邹诗施, 吴宗震, 国原源, 徐雁龙, 刘欢. 病原体相关合成生物学的生物安全风险和应对策略研究*[J]. 中国生物工程杂志, 2023, 43(9): 120-130.
[3] 谢宇, 孙博, 宋佳, 赵晨, 张万忠. 基于代谢路径优化提升丁烯基多杀菌素产量的研究进展*[J]. 中国生物工程杂志, 2023, 43(7): 122-135.
[4] 付萌萌, 苏丹丹, 左锟澜, 吴宗震, 李思思, 徐雁龙, 刘欢. 人体免疫相关的合成生物学生物安全风险和应对策略研究*[J]. 中国生物工程杂志, 2023, 43(6): 125-132.
[5] 宁峻涛, 邹诗施, 左锟澜, 吴宗震, 李晶, 徐雁龙, 刘欢. 合成生物活性物质的生物安全风险和应对策略研究*[J]. 中国生物工程杂志, 2023, 43(2/3): 180-189.
[6] 郭彦彤,刘仲明,张海燕,张宝. 分子即时检测(POCT)技术及其在新发传染病中的应用*[J]. 中国生物工程杂志, 2022, 42(9): 50-57.
[7] 赵赤鸿,苏丹丹,厉春,吴宗震,左锟澜,徐雁龙,刘欢. 总体国家安全观下合成生物学风险和应对策略研究*[J]. 中国生物工程杂志, 2022, 42(12): 120-128.
[8] 马丽丽,易盼盼,敖妮花,焦洪涛,雷瑞鹏,刘欢. 基于学科类别和富集分析的生物安全研究领域学科交叉研究*[J]. 中国生物工程杂志, 2021, 41(12): 116-124.
[9] 王小理. 生物安全时代:新生物科技变革与国家安全治理*[J]. 中国生物工程杂志, 2020, 40(9): 95-109.
[10] 赵萍,张博,王学昭. 农业生物技术领域专利态势分析[J]. 中国生物工程杂志, 2018, 38(8): 100-107.
[11] 逄金辉, 马彩云, 封勇丽, 胡瑞法. 转基因作物生物安全:科学证据[J]. 中国生物工程杂志, 2016, 36(1): 122-138.
[12] 吴菲菲, 栾静静, 黄鲁成, 苗红. 基于专利的玉米生物育种技术景观分析[J]. 中国生物工程杂志, 2015, 35(11): 114-121.
[13] 卢圣国 李霜 朱建国 孟庆雄. 基因组重排技术应用与进展[J]. 中国生物工程杂志, 2010, 30(07): 0-0.
[14] 贾会勇,田佳,李培青,李杰. DHDPS突变基因作为转基因植物筛选标记的研究[J]. 中国生物工程杂志, 2009, 29(05): 61-65.
[15] 刘魁,郭磊,黄晶晶,杨柯. AZ31B镁合金植入小鼠的生物相容性考察[J]. 中国生物工程杂志, 2008, 28(3): 59-63.