Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2024, Vol. 44 Issue (1): 88-97    DOI: 10.13523/j.cb.2312101
生物经济核心产业专题     
全球能源低碳转型下生物液体燃料产业现状与展望*
武国庆,薛晓舟,闵剑,林海龙**()
国投生物科技投资有限公司 北京 100034
Status and Prospects of Liquid Biofuel Industry under the Background of Global Low-carbon Energy Transition
Guoqing WU,Xiaozhou XUE,Jian MIN,Hailong LIN**()
SDIC Biotechnology Investment Co., Ltd., Beijing 100034, China
 全文: PDF(1226 KB)   HTML
摘要:

能源是经济社会发展的基础,而降低能源使用过程中的碳排放已成为可持续发展的重要标志。交通领域化石能源碳排放约占全球能源系统碳排放的20%,减排压力巨大。生物液体燃料因其显著的降碳属性,是化石燃料向电气化和氢燃料过渡阶段的理想替代燃料,并逐渐成为交通领域实现碳中和的重要选择。围绕生物乙醇、生物柴油、生物航煤三种主要生物液体燃料,介绍国内外产业发展现状及进展,分析目前存在的问题,探讨不同应用场景下的生物液体燃料的减碳潜力。结合“双碳”发展目标,总结我国生物液体燃料产业面临的挑战与机遇,提出应重点发展纤维素乙醇及乙醇合成生物航煤(alcohol to jetfuel,ATJ)技术,以破解我国产业发展面临的原料供应问题等若干建议。

关键词: 能源转型生物液体燃料燃料乙醇生物柴油生物航煤    
Abstract:

Energy is the foundation of the economy and society. Carbon emission reduction during energy use has been an important symbol of sustainable development. Carbon emissions of fossil energy used in transportation contributes around 20% to the global energy system, putting enormous pressure on carbon emission reduction. Due to the significant property of carbon reduction, liquid biofuel is an ideal alternative in the transition from fossil fuels to electrification and hydrogen fuel, and has gradually become an important choice to facilitate carbon neutrality in the transportation sector. The global industrial development status and progress of three main liquid biofuels, bio-ethanol, biodiesel and bio-jet fuel, were reviewed in this paper. The existing problems and the carbon reduction potential of bio-liquid fuels under different application scenarios were deeply discussed. The challenges and opportunities of the bio-liquid fuel industry in China were summarized on the basis of double carbon development goal, and some proposals for industrial development were put forward. In the long run, cellulosic ethanol and bio-jet fuel through alcohol-to-jet fuel are two promising technologies to alleviate the pressure of raw material supply in the liquid biofuel industry of China.

Key words: Energy transition    Liquid biofuel    Fuel ethanol    Biodiesel    Bio-jet fuel
收稿日期: 2023-12-20 出版日期: 2024-02-04
ZTFLH:  Q819  
基金资助: *国家重点研发计划(2022YFC2106300)
通讯作者: ** 电子信箱:linhailong@sdic.com.cn   
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
武国庆
薛晓舟
闵剑
林海龙

引用本文:

武国庆, 薛晓舟, 闵剑, 林海龙. 全球能源低碳转型下生物液体燃料产业现状与展望*[J]. 中国生物工程杂志, 2024, 44(1): 88-97.

Guoqing WU, Xiaozhou XUE, Jian MIN, Hailong LIN. Status and Prospects of Liquid Biofuel Industry under the Background of Global Low-carbon Energy Transition. China Biotechnology, 2024, 44(1): 88-97.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2312101        https://manu60.magtech.com.cn/biotech/CN/Y2024/V44/I1/88

图1  2022年全球燃料乙醇产量分布情况
图2  2022年全球生物柴油产量分布情况
公司 规模与投资 原料与产品 技术方案 建成时间
/年份
试车及现状
SDIC/
中国
3.0万吨/年,
5亿元
玉米秸秆/乙醇
+热、电
微酸/中性汽爆预处理+酶水解+C5/C6共发酵 2022 2022年5月试车运行,8月产出合格纤维素乙醇产品;2023年实现连续稳定运行
Raizen/
巴西
3.16万吨/年,
2.37亿雷亚尔
蔗渣、蔗叶/
乙醇
Iogen稀酸汽爆预处理+酶水解+C5/C6共发酵 2014 2014年11月试车;2017年产量突破1万吨;2023年产量达到2.39万吨,产品通过壳牌公司外销美国及欧盟地区;2022年宣布投资3.95亿美元新建2套纤维素乙醇装置,纤维素乙醇总产能达到22万吨/年
Granbiao/
巴西
6.5万吨/年,
2.65亿美元
蔗渣、蔗叶/
乙醇
SO2汽爆预处理+酶水解+ C5/C6共发酵 2014 2014年9月试车,一直维持较低负荷生产
Clariant/
罗马尼亚
5万吨/年,
1.5亿美元
小麦秸秆/乙醇
+热、电
中性汽爆预处理+在线产酶+ C5/C6共发酵 2022 2022年3月试车运行,6月生产出商用纤维素乙醇产品;2023年3月由于产能与财务业绩未达预期,该示范装置减值约2.25亿瑞士法郎,2023年12月宣布关停工厂
POET-DSM/
美国
6.5万吨/年,
2.5亿美元
玉米秸秆、芯/
乙醇+沼气
稀酸汽爆预处理+酶水解+C5/C6共发酵 2014 2014年9月试车,2017年2月达到50%~60%负荷,11月达到80%负荷;2019年11月宣布停产转向研发和技术许可
表1  全球典型商业规模纤维素乙醇示范装置
技术路线 技术特点 原料 对比同期石油
基航煤价格
掺混上
限/%
认证时间
/年份
FT-SPK(费托合成石蜡煤油) 原料丰富,气化流程长,能耗高,设备投资大,操作稳定性有待提升 木质纤维素 1.8~2.2倍[36] 50 2009
HEFA-SPK(油脂和脂肪酸加
氢合成石蜡煤油)
技术稳定,原料有限,对原料预处理要求较高 动植物油脂、脂肪酸 约2倍[31] 50 2011
SIP(糖发酵生产法尼烯再加
氢合成异构烷烃)
原料为可发酵糖,成本高,法尼烯更适合生产高附加值产品 各种来源可发酵糖 约8.5倍[34] 10 2014
FT-SPK/A(费托合成石蜡煤
油与芳烃)
产品增加了芳烃含量 木质纤维素 约2~3倍[34] 50 2015
ATJ-SPK(乙醇/异丁醇合成
石蜡煤油)
最大限度利用现有乙醇发酵装置及工艺,掺混比例更高 各种来源可发酵糖 约2倍[37] 50 2016
CHJ(油脂和脂肪酸水热转化
合成煤油)
流程短,可将任何可再生的脂肪和油脂原料转化为喷气燃料 油脂、脂肪 - 50 2020
HC-HEFAs(碳氢化合物、油脂
与脂肪酸加氢合成石蜡煤油)
原料受限,成本高 藻油 - 50 2020
表2  ASTM7566认证的生物航煤技术路线
产品种类 原料 全生命周期
CO2减排量
备注
一代乙醇 玉米 44%~52%[42] 汽油的CO2排放量为93 g/MJ,乙醇热值为26.7 MJ/kg,吨乙醇折等热量汽油排放2.48吨CO2;2025年燃料乙醇CO2减排量取50%,吨乙醇减排1.24吨CO2
二代乙醇 木质纤维素 >80%[43?-45]
一、二代
生物柴油
棕榈油、豆油、菜籽油
餐厨余油、玉米酒糟油,等
40%~69%[46]
79%~86%[47]
石化柴油的CO2排放量为90 g/MJ,生物柴油热值为46 MJ/kg,吨生物柴油折等热量石化柴油排放4.14吨CO2;2025年生物柴油CO2减排量取80%,吨生物柴油减排3.31吨CO2
生物航煤 油脂
木质纤维素
75%~84%[13,48]
67%~94%[13]
3#航煤的CO2排放量为89 g/MJ,生物航煤热值为43 MJ/kg,吨生物航煤折等热量3#航煤排放3.83吨CO2;2025年生物航煤CO2减排量取80%,吨生物航煤减排3.06吨CO2
表3  生物液体燃料全生命周期CO2减排量
[1] IEA. CO2 emissions in 2022. [2023-11-30]. https://iea.blob.core.windows.net/assets/3c8fa115-35c4-4474-b237-1b00424c8844/CO2Emissionsin2022.pdf.
[2] 魏一鸣, 韩融, 余碧莹, 等. 全球能源系统转型趋势与低碳转型路径——来自于IPCC第六次评估报告的证据. 北京理工大学学报(社会科学版), 2022, 24(4): 163-188.
Wei Y M, Han R, Yu B Y, et al. Global energy systems transition trend and low-carbon transformation pathways: evidences from the IPCC AR6. Journal of Beijing Institute of Technology (Social Sciences Edition), 2022, 24(4): 163-188.
[3] 雪晶, 王红秋, 王双庆. 生物液体燃料在未来能源体系中的作用与前景. 油气与新能源, 2022(3): 60-65.
Xue J, Wang H Q, Wang S Q. Function and outlook of biology liquid fuel in future energy system. Petroleum and New Energy, 2022(3): 60-65.
[4] 能源研究院. 世界能源统计年鉴2023. [2023-11-30]. https://assets.kpmg.com/content/dam/kpmg/cn/pdf/zh/2023/10/statistical-review-of-world-energy-2023.pdf.
Energy Institute. Statistical yearbook of world energy 2023. [2023-11-30]. https://assets.kpmg.com/content/dam/kpmg/cn/pdf/zh/2023/10/statistical-review-of-world-energy-2023.pdf.
[5] RFA. Annual world fuel ethanol production. [2023-12-20]. https://ethanolrfa.org/markets-and-statistics/annual-ethanol-production.
[6] Anon. Edeniq, inc. EPA approves flint hills resources’ Iowa falls plant for cellulosic ethanol using edeniq’s technology. Politics & Government Business, 2017: 16.
[7] Bioenergy International. Pacific ethanol to produce cellulosic ethanol at its Madera plant. [2023-11-30]. https://bioenergyinternational.com/pacific-ethanol-to-produce-cellulosic-ethanol-at-its-madera-plant.
[8] 李冬敏, 王慧丽, 沈乃东, 等. 玉米纤维乙醇生产工艺的研究. 酿酒科技, 2022(5): 24-29.
Li D M, Wang H L, Shen N D, et al. Production technology of corn fiber ethanol. Liquor-Making Science & Technology, 2022(5): 24-29.
[9] RFA. Ready set go 2023 ethanol industry outlook. [2023-12-20]. https://d35t1syewk4d42.cloudfront.net/file/2432/2023%20RFA%20Outlook%20FINAL.pdf.
[10] Pavlenko N, Araújo C. Opportunities and risks for continued biofuel expansion in Brazil. [2023-11-30]. https://api.semanticscholar.org/CorpusID:219863556.
[11] Raizen.Integrated report crop year2022-2023. [2023-12-20]. https://raizen-institucional-relatorios.s3.amazonaws.com/raizen/2023/pdf/RAIZEN_EN_FINAL.pdf.
[12] 王圣, 杨鹤, 闫瑞, 等. 生物航煤生产技术的发展现状. 生物工程学报, 2022, 38(7): 2477-2488.
Wang S, Yang H, Yan R, et al. Development of bio-jet fuel production technology: a review. Chinese Journal of Biotechnology, 2022, 38(7): 2477-2488.
[13] 何皓, 邢子恒, 李顶杰, 等. 可持续航空生物燃料的推广应用及行业影响与应对措施. 化工进展, 2019, 38(8): 3497-3507.
He H, Xing Z H, Li D J, et al. Industry impact and countermeasures for the promotion and application of sustainable aviation biofuel. Chemical Industry and Engineering Progress, 2019, 38(8): 3497-3507.
[14] International Air Transport Association. Alternative fuels: sustainable aviation fuels in practice. [2023-11-30]. http://www.iata.org/pressroom/facts_figures/fact_sheets/Documents/fact-sheet-alternative-fuels.pdf.
[15] Argus. Viewpoint: HVO, SAF demand to outstrip supply in 2022. [2023-12-20]. https://www.argusmedia.com/en/news/2285785-viewpoint-hvo-saf-demand-to-outstrip-supply-in-2022.
[16] 李金根, 刘倩, 刘德飞, 等. 秸秆真菌降解转化与可再生化工. 生物工程学报, 2022, 38(11): 4283-4310.
Li J G, Liu Q, Liu D F, et al. Plant biomass degradation by filamentous fungi and production of renewable chemicals: a review. Chinese Journal of Biotechnology, 2022, 38(11): 4283-4310.
[17] 闵剑. 先进生物液体燃料发展现状及前景展望. 石油石化绿色低碳, 2023, 8(1): 22-27.
Min J. Status and prospect of advanced biological liquid fuel. Energy Conservation and Emission Reduction in Petroleum and Petrochemical Industry, 2023, 8(1): 22-27.
[18] 朱青. 我国液体生物燃料的经济性研究. 当代石油石化, 2017, 25(12): 5-10.
Zhu Q. Economic study on China’s liquid bio-fuels. Petroleum & Petrochemical Today, 2017, 25(12): 5-10.
[19] Chio C, Sain M, Qin W S. Lignin utilization: a review of lignin depolymerization from various aspects. Renewable and Sustainable Energy Reviews, 2019, 107: 232-249.
doi: 10.1016/j.rser.2019.03.008
[20] 赵铭月, 惠岚峰, 高洋, 等. 木质素改性化学品及高值化利用. 中国造纸, 2023, 42(4): 113-122.
Zhao M Y, Hui L F, Gao Y, et al. Lignin modified chemicals and high value utilization. China Pulp & Paper, 2023, 42(4): 113-122.
[21] Wang X X, Wang T, Zhang T Y, et al. Microalgae commercialization using renewable lignocellulose is economically and environmentally viable. Environmental Science & Technology, 2023, 57(2): 1144-1156.
doi: 10.1021/acs.est.2c04607
[22] 李冬敏, 张守庆, 张宏嘉, 等. 秸秆乙醇副产物对辣椒生长·产量和土壤品质的影响. 安徽农业科学, 2022, 50(17): 33-38.
Li D M, Zhang S Q, Zhang H J, et al. Effects of straw ethanol by-product on the growth and yield of pepper and soil properties. Journal of Anhui Agricultural Sciences, 2022, 50(17): 33-38.
[23] Rocha-Meneses L, Hari A, Inayat A, et al. Recent advances on biodiesel production from waste cooking oil (WCO): a review of reactors, catalysts, and optimization techniques impacting the production. Fuel, 2023, 348: 128514.
doi: 10.1016/j.fuel.2023.128514
[24] Veljković V B, Biberdžić M O, Banković-Ilić I B, et al. Biodiesel production from corn oil: a review. Renewable and Sustainable Energy Reviews, 2018, 91: 531-548.
doi: 10.1016/j.rser.2018.04.024
[25] 崔文康, 杨冰冰, 冯云, 等. 第二代生物柴油技术研究进展. 化学研究, 2015, 26(2): 216-220.
Cui W K, Yang B B, Feng Y, et al. A review of the second-generation biodiesel technology. Chemical Research, 2015, 26(2): 216-220.
[26] 王东军, 姜伟, 赵仲阳, 等. 油脂制备生物柴油工业化技术进展. 天然气化工(C1化学与化工), 2017, 42(5): 114-119.
Wang D J, Jiang W, Zhao Z Y, et al. Progress inindustrialization technologies for preparation of biodiesel from oils and fats. Natural Gas Chemical Industry, 2017, 42(5): 114-119.
[27] 左华亮, 刘琪英, 王铁军, 等. 负载的Ni催化剂上植物油脂加氢脱氧制备第二代生物柴油. 燃料化学学报, 2012, 40(9): 1067-1073.
Zuo H L, Liu Q Y, Wang T J, et al. Catalytic hydrodeoxygenation of vegetable oil over Ni catalysts to produce second-generation biodiesel. Journal of Fuel Chemistry and Technology, 2012, 40(9): 1067-1073.
[28] 王东军, 刘红岩, 刘玉香, 等. 生物燃料加氢脱氧催化剂的研究进展. 石油化工, 2012, 41(10): 1214-1219.
Wang D J, Liu H Y, Liu Y X, et al. Research progress in catalysts for biofuel hydrodeoxygenation. Petrochemical Technology, 2012, 41(10): 1214-1219.
[29] Reaume S J, Ellis N. Use of hydroisomerization to reduce the cloud point of saturated fatty acids and methyl esters used in biodiesel production. Biomass and Bioenergy, 2013, 49: 188-196.
doi: 10.1016/j.biombioe.2012.12.008
[30] Bain R L. Worldwide biomass potential: technology characterizations. Golden: National Renewable Energy Laboratory, 2007.
[31] 施翔星, 宋洪川, 黄瑛, 等. 大型石化公司发展加氢生物燃料的现状及对策. 生物质化学工程, 2019, 53(4): 59-66.
doi: 10.3969/j.issn.1673-5854.2019.04.009
Shi X X, Song H C, Huang Y, et al. Current situation and countermeasures of hydroprocessing biofuels development in large petrochemical corporation. Biomass Chemical Engineering, 2019, 53(4): 59-66.
doi: 10.3969/j.issn.1673-5854.2019.04.009
[32] Mizik T, Gyarmati G. Economic and sustainability of biodiesel production: a systematic literature review. Clean Technologies, 2021, 3(1): 19-36.
doi: 10.3390/cleantechnol3010002
[33] Pearlson M, Wollersheim C, Hileman J. A techno-economic review of hydroprocessed renewable esters and fatty acids for jet fuel production. Biofuels, Bioproducts and Biorefining, 2013, 7(1): 89-96.
doi: 10.1002/bbb.2013.7.issue-1
[34] 乔凯, 傅杰, 周峰, 等. 国内外生物航煤产业回顾与展望. 生物工程学报, 2016, 32(10): 1309-1321.
doi: 10.13345/j.cjb.160078 pmid: 29027442
Qiao K, Fu J, Zhou F, et al. Progress and prospect of bio-jet fuels industry in domestic and overseas. Chinese Journal of Biotechnology, 2016, 32(10): 1309-1321.
doi: 10.13345/j.cjb.160078 pmid: 29027442
[35] 章真, 刘晓军, 陈夏, 等. 微藻生物技术在碳中和的应用与展望. 中国生物工程杂志, 2022, 42(Z1): 160-173.
Zhang Z, Liu X J, Chen X, et al. Application and prospect of microalgae biotechnology in carbon neutralization. China Biotechnology, 2022, 42(Z1): 160-173.
[36] Rosillo-Calle F, Teelucksingh S, Thrän D, et al. The potential and role of biofuels in commercial air transport-biojetfuel, IEA bioenergy task 40, 2012. [2023-12-20]. https://www.researchgate.net/publication/337831598_The_Potential_and_Role_of_Biofuels_in_Commercial_Air_Transport_-_Biojetfuel_-_IEA_Bioenergy_Task_40.
[37] Park H, Chae H J, Suh Y W, et al. Techno-economic analysis and CO2 emissions of the bioethanol-to-jet fuel process. ACS Sustainable Chemistry & Engineering, 2022, 10(36): 12016-12022.
[38] Yao G L, Staples M D, Malina R, et al. Stochastic techno-economic analysis of alcohol-to-jet fuel production. Biotechnology for Biofuels, 2017, 10: 18.
doi: 10.1186/s13068-017-0702-7 pmid: 28115990
[39] 蒋炜, 刘铁成, 李伟, 等. 中国新能源汽车市场的高速增长对锂资源的需求与挑战. 矿产勘查, 2023, 14(10): 1814-1824.
Jiang W, Liu T C, Li W, et al. The rapid growth of new energy vehicle market demands of China and challenges for lithium resources. Mineral Exploration, 2023, 14(10): 1814-1824.
[40] 公安部办公厅统计处. 2023年上半年全国机动车和驾驶人情况. 公安研究, 2023(8): 95-96.
Department of Statistics, General Office of Ministry of Public Security. Situation of vehicles and drivers nationwide in the first half of 2023. Policing Studies, 2023(8): 95-96.
[41] Van Dyk S, Saddler J. Progress in commercialization of biojet/sustainable aviation fuels (SAF): technologies, potential and challenges, IEA bioenergy task 39, 2021. [2023-12-20]. https://task39.sites.olt.ubc.ca/files/2021/08/Task-39-Progress-in-the-commercialisation-of-biojet-fuels-FINAL-August-2021.pdf.
[42] Lee U, Kwon H, Wu M, et al. Retrospective analysis of the U.S. corn ethanol industry for 2005-2019:implications for greenhouse gas emission reductions. Biofuels, Bioproducts and Biorefining, 2021, 15(5): 1318-1331.
doi: 10.1002/bbb.v15.5
[43] Wang M Q, Han J, Haq Z, et al. Energy and greenhouse gas emission effects of corn and cellulosic ethanol with technology improvements and land use changes. Biomass and Bioenergy, 2011, 35(5): 1885-1896.
doi: 10.1016/j.biombioe.2011.01.028
[44] Wang M, Han J, Dunn J B, et al. Well-to-wheels energy use and greenhouse gas emissions of ethanol from corn, sugarcane and cellulosic biomass for US use. Environmental Research Letters, 2012, 7(4): 045905.
[45] Essential Energy. 2021 ethanol industry outlook. [2023-11-30]. https://d35t1syewk4d42.cloudfront.net/file/39/RFA_Outlook_2021_fin_low.pdf.
[46] Brandão M, Heijungs R, Cowie A L. On quantifying sources of uncertainty in the carbon footprint of biofuels: crop/feedstock, LCA modelling approach, land-use change, and GHG metrics. Biofuel Research Journal, 2022, 9(2): 1608-1616.
doi: 10.18331/BRJ2022.9.2.2
[47] Xu H, Ou L W, Li Y, et al. Life cycle greenhouse gas emissions of biodiesel and renewable diesel production in the United States. Environmental Science & Technology, 2022, 56(12): 7512-7521.
doi: 10.1021/acs.est.2c00289
[48] International Civil Aviation Organization. State letter AN 1/17.14-17/ 129: proposal for the first edition of annex 16, volume Ⅳ, concerning standards and recommended practices relating to the carbon offsetting and reduction scheme for international aviation (CORSIA)-attachment C: ICAO CORSIA implementation elements and supporting documents. Montreal, 2017.
[49] BP Amoco. BP energy outlook 2023 edttion. [2023-12-20]. https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/energy-outlook/bp-energy-outlook-2023.pdf.
[50] IEA. Net zero roadmap Chinese full report. [2023-12-20]. https://iea.blob.core.windows.net/assets/f4d0ac07-ef03-4ef7-8ad3-795340b37679/NetZeroby2050-ARoadmapfortheGlobalEnergySector_Chinese_CORR.pdf
[51] 袁志逸, 李振宇, 康利平, 等. 中国交通部门低碳排放措施和路径研究综述. 气候变化研究进展, 2021, 17(1): 27-35.
Yuan Z Y, Li Z Y, Kang L P, et al. A review of low-carbon measurements and transition pathway of transport sector in China. Climate Change Research, 2021, 17(1): 27-35.
[52] IEA. Net zero by 2050-A roadmap for the global energy sector_Chinese_CORR-2021. [2023-12-20]. https://www.iea.org/reports/net-zero-by-2050?language=zh.
[1] 杨凯, 战景明, 高芬芳, 武宝利, 苏丽霞, 周文明, 薛向明, 郝杰, 赵阳. 小球藻用于生物柴油生产的研究进展[J]. 中国生物工程杂志, 2015, 35(11): 99-104.
[2] 李谢昆, 周卫征, 郭颖, 吴浩, 许敬亮, 袁振宏. 微藻生物质制备燃料乙醇关键技术研究进展[J]. 中国生物工程杂志, 2014, 34(5): 92-99.
[3] 李云成, 汤岳琴, 木田建次. “组学”技术在燃料乙醇生产用酿酒酵母菌株构建中的应用[J]. 中国生物工程杂志, 2014, 34(2): 118-128.
[4] 雷学青, 卢哲, 高保燕, 张文源, 李爱芬, 张成武. 利用平板反应器大量培养高产油绿藻——尖状栅藻的生长和油脂积累规律[J]. 中国生物工程杂志, 2014, 34(11): 91-99.
[5] 刘会影, 薛冬桦, 潘安龙, 徐洪章, 叶小金, 孙国英. 微生物油脂酯化工艺优化[J]. 中国生物工程杂志, 2013, 33(3): 92-98.
[6] 胡文军, 罗玮, 李汉广, 顾秋亚, 余晓斌. 产油微藻筛选和鉴定及其产油性能的研究[J]. 中国生物工程杂志, 2012, 32(12): 66-72.
[7] 李小冬, 杨娜, 万永虎, 吴嘉, 贾东晨, 乔敏. 表面展示工程在酒精发酵方面的应用[J]. 中国生物工程杂志, 2012, 32(08): 107-110.
[8] 李涛, 李爱芬, 桑敏, 吴洪, 尹顺吉, 张成武. 富油能源微藻的筛选及产油性能评价[J]. 中国生物工程杂志, 2011, 31(04): 98-105.
[9] 郑洪立 高振 黄和 纪晓俊 白跃华 李文琦. 响应面法优化自养小球藻产生物柴油油脂[J]. 中国生物工程杂志, 2010, 30(08): 106-111.
[10] 张齐 郑洪立 唐小红 尹继龙 高振 纪晓俊 李文琦 黄和. 基于模糊综合评价的产生物柴油微藻藻种筛选[J]. 中国生物工程杂志, 2010, 30(05): 69-75.
[11] 姜进举 苗凤萍 冯大伟 秦松. 微藻生物柴油技术的研究现状及展望[J]. 中国生物工程杂志, 2010, 30(02): 134-137.
[12] 胡风庆 回晶. 可再生生物柴油副产物合成生物材料PHA研究现状[J]. 中国生物工程杂志, 2009, 29(11): 112-116.
[13] 夏金兰,万民熙,王润民,刘鹏,李丽,黄斌,邱冠周. 微藻生物柴油的现状与进展[J]. 中国生物工程杂志, 2009, 29(07): 118-126.
[14] 郑洪立,张齐,马小琛,纪晓俊,金平,黄和. 产生物柴油微藻培养研究进展[J]. 中国生物工程杂志, 2009, 29(03): 110-116.
[15] 邓勇,房俊民,陈方,陈云伟,王春明. 生物燃料最新发展态势分析[J]. 中国生物工程杂志, 2008, 28(8): 142-147.