Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2024, Vol. 44 Issue (1): 152-158    DOI: 10.13523/j.cb.2310037
标准与共识     
预防及治疗用噬菌体质量标准专家共识*
中国噬菌体研究联盟,中国微生物学会医学微生物学与免疫学专业委员会,中国生物工程学会噬菌体技术专业委员会,执笔人:秦金红1,**(),郭晓奎2,**(),吴楠楠3,**(),童贻刚4,**()
1 上海交通大学医学院 上海 200025
2 上海交通大学医学院 国家热带病研究中心全球健康学院 上海 200025
3 创噬纪(上海)生物技术有限公司 上海 201108
4 北京化工大学生命科学与技术学院 北京 100029
Consensus on Standards of Phage Quality for Prophylactic and Therapeutic Use
Phage Research Alliance Chinese, Medical Microbiology and Immunology Committee of Chinese Society for Microbiology, Phage Technology Committee of Chinese Society of Biotechnology,Jinhong Writers: QIN1,**(),Xiaokui GUO2,**(),Nannan WU3,**(),Yigang TONG4,**()
1 Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
2 School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
3 CreatiPhage Biotechnology Co., Ltd., Shanghai 201108, China
4 College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
 全文: PDF(1146 KB)   HTML
摘要:

日益严重的细菌耐药性给全球公共卫生带来了重大挑战,噬菌体疗法作为细菌感染治疗的替补疗法,近年来重新得到医生、研究者和产业界的重视。噬菌体是特异性感染细菌的一类病毒。噬菌体疗法可以精准靶向并清除病原菌而不破坏自然环境微生态及人体正常菌群。由于噬菌体的活病毒属性、杀菌特异性等特征,使得噬菌体的药学、非临床和临床研究有别于传统药物。目前,国内外尚缺乏相关规范和指南,限制了噬菌体的转化应用和推广。为此,基于国内外前期噬菌体治疗临床研究的经验,并参考噬菌体治疗相关文献报道,组织噬菌体基础研究、临床、药学等领域专家,起草了本共识。对入库噬菌体的来源、噬菌体宿主、入库噬菌体的生物学特性以及入库噬菌体的包装与标识提出要求,旨在规范应用型噬菌体的标准,并满足噬菌体库的共享需求,加速推动噬菌体的研究、转化及应用。

关键词: 噬菌体预防及治疗质量标准专家共识    
Abstract:

The emergence of drug resistant pathogens has posed a major challenge to global public health. Phage therapy, as an alternative therapy for the treatment of bacterial infections, has received renewed attention from clinicians, researchers and industrialists in recent years. Phages are a kind of viruses that specifically infect bacteria. Phage therapy can precisely target and eliminate pathogens without harming the natural environment or human microbiota. Due to the characteristics of phages such as live virus property and bactericidal specificity, the pharmacological, non-clinical and clinical studies of phages are different from those of traditional drugs. Currently, there is still a lack of relevant standards and guidelines worldwide, which has severely limited the translational application of phages and their products. To this end, based on the experience of clinical studies on phage therapy in the early stage, and referring to the literature reports on phage therapy, we organized experts including researchers, clinicians, and pharmacologists to draft this consensus. Requirements for phage source, phage host, biological properties of phages, and packaging and labelling of phages are proposed. The aim is to standardize the standards for phage applications and to meet the needs of phage library sharing, so as to accelerate the research, translation and application of phages.

Key words: Phage    Prevention and therapy    Quality standard    Consensus
收稿日期: 2023-10-25 出版日期: 2024-02-04
ZTFLH:  Q939.48  
基金资助: *国家重点研发计划(2021YFA0911200);国家重点研发计划(2022FY101101);国家自然科学基金(32170141);国家自然科学基金(32322082);上海市卫生健康委卫生行业临床研究专项(202240193)
通讯作者: ** 电子信箱:jinhongqin@sjtu.edu.cn; xkguo@shsmu.edu.cn; nannan.wu@cphage.com; tongyigang@mail.buct.edu.cn   
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
中国噬菌体研究联盟
中国微生物学会医学微生物学与免疫学专业委员会
中国生物工程学会噬菌体技术专业委员会
执笔人:秦金红
郭晓奎
吴楠楠
童贻刚

引用本文:

中国噬菌体研究联盟, 中国微生物学会医学微生物学与免疫学专业委员会, 中国生物工程学会噬菌体技术专业委员会, 执笔人:秦金红, 郭晓奎, 吴楠楠, 童贻刚. 预防及治疗用噬菌体质量标准专家共识*[J]. 中国生物工程杂志, 2024, 44(1): 152-158.

Phage Research Alliance Chinese, Medical Microbiology and Immunology Committee of Chinese Society for Microbiology, Phage Technology Committee of Chinese Society of Biotechnology, Jinhong Writers: QIN, Xiaokui GUO, Nannan WU, Yigang TONG. Consensus on Standards of Phage Quality for Prophylactic and Therapeutic Use. China Biotechnology, 2024, 44(1): 152-158.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2310037        https://manu60.magtech.com.cn/biotech/CN/Y2024/V44/I1/152

项目 噬菌体 扩增宿主菌
编号
种属
宿主谱 -
培养基及培养条件 -
环境来源
地理位置
形态 -
基因组序列文件路径
滴度 -
保藏溶液
pH值稳定性 -
制备日期
制备实验室
保藏位置
保存温度
保质期限
提供者信息
保藏人
表1  入库噬菌体标识信息样表
[1] Tacconelli E, Carrara E, Savoldi A, et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. The Lancet Infectious Diseases, 2018, 18(3): 318-327.
doi: 10.1016/S1473-3099(17)30753-3
[2] Gordillo Altamirano F L, Barr J J. Phage therapy in the postantibiotic era. Clinical Microbiology Reviews, 2019, 32(2): e00066-18.
[3] Watts G. Phage therapy: revival of the bygone antimicrobial. Lancet, 2017, 390(10112): 2539-2540.
doi: S0140-6736(17)33249-X pmid: 29231827
[4] Lamson O F. Commercial aspects of bacteriophage therapy. Journal of the American Medical Association, 1933, 100(20):1603-1604.
[5] Editorial. Limitations of bacteriophage therapy. Journal of the American Medical Association, 1931, 96(9): 693.
[6] Salmond G P C, Fineran P C. A century of the phage: past, present and future. Nature Reviews Microbiology, 2015, 13(12): 777-786.
doi: 10.1038/nrmicro3564 pmid: 26548913
[7] Hesse S, Adhya S. Phage therapy in the twenty-first century: facing the decline of the antibiotic era, is it finally time for the age of the phage? Annual Review of Microbiology, 2019, 73: 155-174.
doi: 10.1146/micro.2019.73.issue-1
[8] Dion M B, Oechslin F, Moineau S. Phage diversity, genomics and phylogeny. Nature Reviews Microbiology, 2020, 18(3): 125-138.
doi: 10.1038/s41579-019-0311-5 pmid: 32015529
[9] Theuretzbacher U, Outterson K, Engel A, et al. The global preclinical antibacterial pipeline. Nature Reviews, Microbiology, 2020, 18(5): 275-285.
doi: 10.1038/s41579-019-0288-0 pmid: 31745331
[10] Uyttebroek S, Chen B X, Onsea J, et al. Safety and efficacy of phage therapy in difficult-to-treat infections: a systematic review. The Lancet Infectious Diseases, 2022, 22(8): e208-e220.
doi: 10.1016/S1473-3099(21)00612-5
[11] Hatfull G F, Dedrick R M, Schooley R T. Phage therapy for antibiotic-resistant bacterial infections. Annual Review of Medicine, 2022, 73: 197-211.
doi: 10.1146/med.2022.73.issue-1
[12] Melo L D R, Oliveira H, Pires D P, et al. Phage therapy efficacy: a review of the last 10 years of preclinical studies. Critical Reviews in Microbiology, 2020, 46(1): 78-99.
doi: 10.1080/1040841X.2020.1729695 pmid: 32091280
[13] Luong T, Salabarria A C, Edwards R A, et al. Standardized bacteriophage purification for personalized phage therapy. Nature Protocols, 2020, 15(9): 2867-2890.
doi: 10.1038/s41596-020-0346-0 pmid: 32709990
[14] Yerushalmy O, Khalifa L, Gold N, et al. The Israeli phage bank (IPB). Antibiotics, 2020, 9(5): 269.
doi: 10.3390/antibiotics9050269
[15] 胡福泉, 童贻刚. 噬菌体学:从理论到实践. 北京: 科学出版社, 2021: 398-410.
Hu F Q, Tong Y G. Bacteriophage:from basic science to application. Beijing: Science Press, 2021: 398-410.
[16] Yuan S J, Shi J, Jiang J R, et al. Genome-scale top-down strategy to generate viable genome-reduced phages. Nucleic Acids Research, 2022, 50(22): 13183-13197.
doi: 10.1093/nar/gkac1168 pmid: 36511873
[17] Yehl K, Lemire S, Yang A C, et al. Engineering phage host-range and suppressing bacterial resistance through phage tail fiber mutagenesis. Cell, 2019, 179(2): 459-469, e9.
doi: S0092-8674(19)31022-0 pmid: 31585083
[18] Ando H, Lemire S, Pires D P, et al. Engineering modular viral scaffolds for targeted bacterial population editing. Cell Systems, 2015, 1(3): 187-196.
pmid: 26973885
[19] Kilcher S, Studer P, Muessner C, et al. Cross-genus rebooting of custom-made, synthetic bacteriophage genomes in L-form bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(3): 567-572.
[20] Cheng L, Deng Z Q, Tao H R, et al. Harnessing stepping-stone hosts to engineer, select, and reboot synthetic bacteriophages in one pot. Cell Reports Methods, 2022, 2(5): 100217.
doi: 10.1016/j.crmeth.2022.100217
[21] Kutter E. Phage host range and efficiency of plating. Methods in Molecular Biology, 2009, 501: 141-149.
doi: 10.1007/978-1-60327-164-6_14 pmid: 19066818
[22] Drake J W. A constant rate of spontaneous mutation in DNA-based microbes. Proceedings of the National Academy of Sciences of the United States of America, 1991, 88(16): 7160-7164.
[23] Chevallereau A, Pons B J, van Houte S, et al. Interactions between bacterial and phage communities in natural environments. Nature Reviews Microbiology, 2022, 20(1): 49-62.
doi: 10.1038/s41579-021-00602-y
[1] 孙舒扬, 吴胜波, 张欣乔, 梁畅畅, 乔建军. 噬菌体与细菌基于群体感应的双向互作*[J]. 中国生物工程杂志, 2024, 44(1): 107-117.
[2] 郭娆晴, 黄嘉雯, 张利刚, 赵文丽, 辜江涛, 邓宁. 具有高亲和力和稳定性的人源性抗PD-L1二硫键稳定Diabody的制备*[J]. 中国生物工程杂志, 2023, 43(6): 20-30.
[3] 熊利洋, 胡秀玲, 魏云林. 耐药菌非抗生素疗法研究进展*[J]. 中国生物工程杂志, 2023, 43(1): 50-58.
[4] 李金花,白雨凡,马春兰,季秀玲,魏云林. 噬菌体温度适应性的研究进展*[J]. 中国生物工程杂志, 2022, 42(1/2): 139-145.
[5] 郭曼曼,田开仁,乔建军,李艳妮. 噬菌体重组酶系统在合成生物学中的应用*[J]. 中国生物工程杂志, 2021, 41(8): 90-102.
[6] 陈修月,周文锋,何庆,苏冰,邹亚文. 噬菌体Qβ病毒样颗粒的制备、纯化及鉴定[J]. 中国生物工程杂志, 2021, 41(7): 42-49.
[7] 蔺士新,刘东晨,雷云,熊盛,谢秋玲. TNF-α纳米抗体的筛选、表达及特异性检测 *[J]. 中国生物工程杂志, 2020, 40(7): 15-21.
[8] 秦旭颖,杨洪江. 噬菌体分离纯化技术研究进展*[J]. 中国生物工程杂志, 2020, 40(5): 78-83.
[9] 杨丽,石晓宇,李文蕾,李剑,徐寒梅. 构建噬菌体展示抗体库过程中电穿孔法的条件优化[J]. 中国生物工程杂志, 2020, 40(4): 42-48.
[10] 王国强,于茵茵,曾华辉,王旭东,吴玉彬,尚立芝,李玉林,张怡青,张西西,张振强,王云龙. 基于MS2噬菌体病毒样颗粒的RT-PCR检测新型冠状病毒(SARS-CoV-2)质控品制备*[J]. 中国生物工程杂志, 2020, 40(12): 31-40.
[11] 赵建民,张思源. 耐药菌感染的噬菌体治疗专利技术[J]. 中国生物工程杂志, 2020, 40(10): 104-111.
[12] 陈秀秀,吴成林,周丽君. 人源抗体制备及临床应用研究进展 *[J]. 中国生物工程杂志, 2019, 39(10): 90-96.
[13] 李金晶,许菲,季艳伟,舒梅,涂追,付金衡. 抗c-Myc标签纳米抗体的筛选与应用[J]. 中国生物工程杂志, 2018, 38(2): 61-67.
[14] 庞倩,陈晶,王小红,王佳. 基于噬菌体展示技术抗黄曲霉毒素B1单链抗体的筛选及其蛋白结构分析 *[J]. 中国生物工程杂志, 2018, 38(12): 41-48.
[15] 方媛,徐广贤,王羡,王红霞,潘俊斐. 双峰驼源天然噬菌体纳米抗体展示库的构建及抗GDH纳米抗体筛选 *[J]. 中国生物工程杂志, 2018, 38(12): 49-56.