Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2024, Vol. 44 Issue (1): 128-141    DOI: 10.13523/j.cb.2309002
技术情报     
二氧化碳生物转化技术发展现状与趋势分析
吴晓燕,陈方*()
中国科学院成都文献情报中心 成都 610299
Current Status and Trends in Global CO2 Bioconversion Technology
Xiaoyan WU,Fang CHEN*()
National Science Library (Chengdu), Chinese Academy of Sciences, Chengdu 610299, China
 全文: PDF(1233 KB)   HTML
摘要:

二氧化碳作为下一代生物制造原料,其高效转化和利用对于实现低碳、绿色和可持续发展具有重要意义。发展二氧化碳生物转化技术有助于减少温室气体排放,促进碳中和目标的实现,推动经济增长和产业变革,并将在构建可持续未来中发挥关键作用。通过系统性调研二氧化碳生物转化技术的全球政策布局、科学研究进展和产业化现状,力求呈现二氧化碳生物转化技术的当前发展态势与研发活动特点。研究发现,美国、欧盟、英国、日本等主要经济体都纷纷出台负碳生物制造战略,菌种挖掘、代谢改造、产品创新、产能放大和工艺改进是当前研究重点,产业化面临产品品类少、生产成本高等瓶颈问题。对此,建议政府和产业界采取激励措施,提供更加有利于技术创新和产业转化的环境。

关键词: 生物转化温室气体二氧化碳生物制造    
Abstract:

Carbon dioxide (CO2) as the next-generation feedstock for bio-manufacturing holds significant importance for achieving low-carbon, green, and sustainable development. The development of CO2 bioconversion technology contributes to reducing greenhouse gas emissions, facilitating carbon neutrality goals, and driving economic growth and industrial innovation, playing a crucial role in building a sustainable future. This study presents the current development status and research activities of CO2 bioconversion technology by systematically investigating global policy frameworks, scientific advancements, and industrialization efforts. The research reveals that major countries and regions such as the United States, European Union, United Kingdom, and Japan have introduced strategies for carbon-negative bio-manufacturing. Key research focuses include strain exploration, metabolic engineering, scale-up production, product innovation and process improvement. However, the industrialization of CO2 bioconversion faces challenges such as limited product categories and high production costs. Therefore, this paper suggests that governments and industries implement incentive measures and create an environment conducive to technological innovation and industrial transformation.

Key words: Bioconversion    Greenhouse gases    Carbon dioxide    Bio-manufacturing
收稿日期: 2023-09-02 出版日期: 2024-02-04
ZTFLH:  Q81  
通讯作者: * 电子信箱:chenf@clas.ac.cn   
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
吴晓燕
陈方

引用本文:

吴晓燕, 陈方. 二氧化碳生物转化技术发展现状与趋势分析[J]. 中国生物工程杂志, 2024, 44(1): 128-141.

Xiaoyan WU, Fang CHEN. Current Status and Trends in Global CO2 Bioconversion Technology. China Biotechnology, 2024, 44(1): 128-141.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2309002        https://manu60.magtech.com.cn/biotech/CN/Y2024/V44/I1/128

类别 产品 菌株 应用 参考文献
醇类 乙醇 栅列藻(Scenedesmus obliquus)、集胞藻、钝顶节旋藻(Arthrospira platensis)、小球藻(Chlorella marina) 生物燃料 [8?-10]
1,3-丙二醇、异丙醇、丁醇、2,3-丁二醇、脂肪醇 集胞藻、聚球藻 燃料、化学品 [2,11 -12]
有机酸 乙酸、琥珀酸、乳酸 聚球藻、集胞藻、小球藻 化学品 [13?-15]
脂肪酸/脂质 脂质、脂肪酸 三角褐指藻(Phaedactylum tricomutum)、聚球藻、集胞藻、二形珊藻(Scenedesmus dimorphus)、栅列藻 营养、生物燃料 [10,16?? -19]
棕榈酸、油酸 小球藻、栅藻、单针藻(Monoraphidium dybowskii) 生物柴油 [20]
亚麻酸 近头状尖胞藻(Raphidocelis subcapitata) 营养 [21]
二十碳五烯酸 三角褐指藻、微拟球藻(Nannochloropsis)、菱形藻(Nitzschia)、巴夫藻(Pavlova salina)、骨条藻(Skeletonema costatum) 食物补充、营养 [22]
二十二碳六烯酸 裂壶藻(Schizochytrium)、寇氏隐甲藻(Crypthecodinium cohnii)、巴夫藻 营养、保健 [22-23]
花生四烯酸 紫球藻(Porphyridium purpureum)、纤细裸藻(Euglena gracilis)、缺刻缘绿藻(Parietochloris incisa) 营养、保健 [24]
糖类 葡萄糖、半乳糖、甘露糖、木糖 雪松蓝菌藻(Porphyridium cruentum) 生物乙醇 [25]
淀粉 莱茵衣藻(Chlamydomonas reinhardtii) 生物乙醇、
淀粉基塑料
[26-27]
多糖 雪松蓝菌藻、球等鞭金藻(Isochrysis galbana) 医药、化妆品 [28]
纤维素 海生椭球藻(Nannochloropsis oceanica) 纤维素纳米纤维 [29]
色素/天然产物 叶黄素、β-胡萝卜素 珊藻、杜氏盐藻(Dunaliella salina) 健康、食品
添加剂、饲料
[30-31]
虾青素(astaxanthin)、岩藻黄素(fucoxanthin)、植物花青素(phycocyanin) 雨生红球藻(Haematococcus pluvialis)、鱼鳞藻(Mallomonas)、螺旋藻(Spirulina platensis) 保健、制药、
饲料添加剂
[32?-34]
氨基酸/蛋白质
/维生素
必需氨基酸(如苏氨酸、蛋氨酸、缬氨酸、亮氨酸、赖氨酸),非必需氨基酸(如半胱氨酸、天冬氨酸、脯氨酸、谷氨酸、精氨酸) 黄提金藻(Tisochrysis lutea)、迦得拟微球藻(Nannochloropsis gaditana)、扁藻(Tetraselmis)、珊藻 食品、饲料 [35-36]
肽段 路氏巴夫藻(Pavlova lutheri)、钝顶节旋藻、斜生四链藻(Tetradesmus obliquus) 生物活性剂、
抗氧化剂
[37-38]
藻蓝蛋白 节旋藻(Arthrospira)、螺旋藻(Spirulina) 保健、化妆品、
抗氧化胶囊
[38?-40]
表1  藻类生物炼制生产高价值产品
类别 菌株 原料 产品 产量或产率 参考文献
醇类 永达尔梭菌(Clostridium ljungdahlii) CO2/CO/H2 乙醇 19 g/L [43]
自产醇梭菌(Clostridium autoethanogenum) CO2/CO/H2 异丙醇 3 g/L/h [44]
食一氧化碳梭菌(Clostridium carboxidivorans) CO2、CO和H2 乙醇和丁醇 乙醇3 g/L,
丁醇0.35 g/L
[45]
真氧产碱杆菌(Raistonia eutropha H16) CO2 高级醇 - [46-47]
有机酸 伍氏醋杆菌(Acetobacterium woodii) CO2 甲酸 330 mmol/L,14 d [48]
伍氏醋杆菌 CO2/H2 醋酸盐 51 g/L [49]
梭菌(Clostridium aceticumClostridium carboxidivorans) CO2和零价铁
(ZVI)
乙酸和乙醇 乙酸2.11 g/L,
乙醇125 mg/L
[50]
伍氏醋杆菌和梭菌(Clostridium drakei) CO2/H2 乳酸 8.1 g/L [51]
自产醇梭菌 CO2 丁酸 5.56 g/L [52]
永达尔梭菌 CO2 丁酸 4.5 g/L [53]
非丙二酸柠檬酸杆菌(Citrobacter amalonaticus) CO2/H2 琥珀酸 12 g/L [54]
柠檬酸杆菌(Citrobacter BD11) CO2 琥珀酸 15.02 g/L [55]
激烈火球菌(Pyrococcus furiosus) CO2 3-羟基丙酸 60 mg/L [56]
脂肪酸、油脂 芽孢杆菌(Bacillus sp. SS105) CO2 生物柴油 脂肪酸甲酯
120 mg/L
[57]
生物材料 钩虫贪铜菌H16 甲酸盐和CO2 PHB 70%生物质 [58]
贪铜菌(Cupriavidus eutrophus B-10646) CO2/H2 聚羟基脂肪酸(polyhydroxyalkanoates,PHA) 50 g/L [59]
钩虫贪铜菌 CO2/H2 PHB 49.2 g/L [60]
脱氯艾德昂菌(Ideonella dechloratanus) CO2/H2 PHB 5.26 g/L [61]
表2  自养微生物工程改造生产高价值化学品
菌株 工程改造 原料 产品 产量或产率 参考文献
大肠杆菌 改造甲酸水解酶(formate hydrogenlyase,FHL-1) H2、CO2 甲酸 - [68]
大肠杆菌 引入卡尔文循环支路 CO2 苹果酸 387 mmol/L [64]
大肠杆菌 共表达羧化激酶(pck)和碳酸氢盐转运
蛋白(sbtA)
CO2 琥珀酸 73.4 g/L [69]
酿酒酵母 共表达cbbM、sPRK、GroEL & GroES CO2/木糖/
麦芽糖
乙醇 0.47 g乙醇/g糖,
产率1.5 g/(L·h-1)
[62]
巨型球菌
(Megasphaera sueciensis)
结合电化学 CO2 丁酸盐 - [52]
毕赤酵母 表达cadAldhL基因 CO2 衣康酸 2 g/L [70]
大肠杆菌 四氢叶酸和甘氨酸裂解/合成酶系统还原运转 甲酸盐和CO2 甘氨酸和
丝氨酸
- [71]
表3  异养微生物工程改造生产高价值化学品
通路 条件 反应步骤 产物 ATP/CO2
(mol/mol)
NAD(P)H/CO2
(mol/mol)
参考
文献
CBB循环 有氧 11 GA-3P 3 2 [79]
3-羟基丙酸双循环 有氧 16 丙酮酸 1.67 1.67 [79]
WL通路 厌氧 8 乙酰辅酶a 0.5 2 [70]
rTCA循环 厌氧 9 乙酰辅酶a 1 2 [79]
DC/HB循环 厌氧 14 乙酰辅酶a 1.5 2 [79]
HP/HB循环 有氧 16 乙酰辅酶a 2 2 [79]
CETCH循环 有氧 12 乙醛酸 1 4 [76]
rGPS-MCG系统 有氧/厌氧 15 乙酰辅酶A、丙酮酸和苹果酸 2.5 2.5 [81]
ASAP途径 有氧 11 淀粉 0.5 2 [77]
ACSP途径 有氧 8 葡萄糖 1/6 0 [78]
POAP循环 厌氧 4 草酸 1 0.5 [79]
ICE-CAP循环 厌氧 8 氨基酸和有机酸 0 0 [80]
表4  天然和人工固碳途径
分类 主要产品 生产菌株 参考文献
C1 甲烷、甲醇、甲酸 甲烷菌(Methanosaeta concilii)、凯伍嗜热厌氧菌 [82??-85]
C2 乙醇、乙烯、乙酸 酿酒酵母、蓝绿藻(Cyanobacteria)、伍氏醋杆菌 [86?-88]
C3 丙酮、乳酸、3-羟基丙酸、异丙醇、1, 3-丙二醇、甘油 乙醇梭菌、小球藻(Chlorella sp. GD)、蓝绿藻、集胞藻、伍氏醋杆菌、聚球藻 [44,89??? -93]
C4 正丁醇、异丁醇、2, 3-丁二醇、3-羟基丁酸、丁二酸 沼泽红假单胞菌(Rhodopseudomonas palustris)、黏液优杆菌(Eubacterium limosum)、醋杆菌(acetogenic bacteria) [94????-99]
C5 甲基-丁醇、异戊二烯 聚球藻、蓝绿藻、非丙二酸柠檬酸杆菌 [100?-102]
C6 葡萄糖 聚球藻 [96,103]
CN 淀粉、蛋白、油脂、PHA、PHB 小球藻(Chlorella sp. AE-10)、节旋藻、绿球藻(Chlorococcum littorale)、钩虫贪铜菌 [18,60,104 -105]
表5  二氧化碳生物转化代表性高价值化学品及生产菌株
企业名称 国家 主要产品 技术布局
Calgren Renewable Fuels 美国 乙醇 2015年建立BECCS工厂,二氧化碳转化能力为15万吨/年
Drax Biomass 英国 生物质能 2019年投资约4 000万英镑启动BECCS项目,预计每年利用CO2约800万吨
Johnson Matthey 英国 特种化学品 2022年推出HyCOgen反向水煤气变换技术,将绿色氢气和CO2转化为一氧化碳,与FT CANS技术集成,可将95%的CO2转化为优质合成原油,进一步升级为可持续的直接燃料产品
Calgill 英国 乙醇 2016年建立BECCS工厂,每年利用二氧化碳10万吨
Evonik 德国 特种化学品 2018年,Evonik与西门子联合研究Rheticus项目,利用可再生能源生产的电力和细菌将二氧化碳与水转化为高价值的特种化学品,2019年项目进入第二阶段并获得德国联邦教育及研究部350万欧元的资金支持
Total Energies 法国 多元化能源 2020年,Total Energies与LanzaTech、欧莱雅联合推出全球首创的环保可持续包装工艺,可用于生产化妆品塑料包装,原料来自捕集和回收的工业碳排放
AlcoBioFuel 比利时 乙醇 2016年建立BECCS工厂,每年利用二氧化碳10万吨
Novo Nordisk 丹麦 生物制药 成立跨学科的二氧化碳研究中心,重点关注微生物和电化学,将二氧化碳转化为燃料和塑料
Lantm?nnen Agroetanol 瑞典 乙醇 2015年建立BECCS工厂,每年利用二氧化碳20万吨
Chitose Group 日本 生物技术 领导MATSURI藻类制造项目,于2023年4月完成占地面积5公顷的CHITOSE碳捕获中心
山西华新能源集团 中国 新能源 2020年,山西华新能源集团与百年集团合作投资“碳中和微藻循环经济产业园”,打造山西省乃至全国第一个“生物天然气+微藻固碳”的零碳循环经济新模式
表6  二氧化碳生物转化技术研发代表性化工企业
企业名称 国家 成立年份 核心产品和技术
Solazyme 美国 2003 微藻生物燃料,标准工业发酵设备,7.5万升规模
Euglena 日本 2005 藻类燃料、功能性食品和化妆品,堤坝型微藻培养池,施工成本降低约90%,施工周期缩短约75%
Aurora Algae 美国 2006 光合藻类的平台,生产药物、营养补充剂、饲料、水产养殖、食品和饮料以及燃料等
Pond Technologies 澳大利亚 2007 封闭式的光生物反应系统,含有大量二氧化碳的工业烟气直接喷射到反应系统中,藻类产量可达普通池塘的20倍
Joule Unlimited 美国 2007 藻类生物燃料(燃料乙醇和生物柴油)Helioculture设施,每平方米年产量超过18.7升
Sapphire Energy 美国 2007 藻类生物燃料,设施名为IABR,6.7万平方米池塘,机械和加工设备占地121.4万平方米
新奥生物 中国 2007 生产燃料、化学品和食品等,室外跑道池养殖基地,拥有5 000吨/年微藻生物柴油示范工程,占地280万平方米
Photanol 荷兰 2008 生物燃料和其他化学品
国投微藻生物科技中心 中国 2013 生物柴油、虾青素等,两步法光生物反应器微藻生长系统装置,年产雨生红球藻1 000吨,虾青素提取率在85%时可得34吨虾青素
Provectus Algae 澳大利亚 2018 提供藻类生物合成服务,用于生产药物、疫苗、植物性食品和香料、天然生物农药以及治疗传染病、炎症和心血管疾病的新型生物技术产品
表7  藻类生物制造代表性企业
名称/国别 关键技术 原料 主要产品 产能
LanzaTech/新西兰 自产醇梭菌 CO、H2、CO2 乙醇、微生物蛋白 燃料乙醇4 700万加仑
首钢朗泽/中国 LanzaTech技术授权 工业尾气 乙醇、微生物蛋白 燃料乙醇4.5万吨、蛋白粉5 000吨
巨鹏生物/中国 收购英力士生物技术 合成气 乙醇 燃料乙醇2万吨/年(计划20万吨/年)
吉态来博/中国 乙酸菌和酵母菌 工业尾气 乙醇、饲用单细胞蛋白和不饱和长链油脂 -
Arkeon Bio/奥地利 古生菌 CO2 氨基酸 150 L投产,预计2024年底投产3 000 L
Solar Foods/芬兰 黄杆菌属菌株 CO2和H2 微生物蛋白质 计划100吨微生物蛋白
CO2 Solutions/加拿大 碳酸酐酶 CO2 碳捕集 -
光玥生物/中国 光合微生物 CO2 苯乳酸、苯苷氨酸 -
NovoNutrients/美国 微生物 CO2和H2 蛋白质、类胡萝卜素 计划吨级类胡萝卜素
表8  二氧化碳微生物/酶转化代表性企业
[1] Gong F Y, Zhu H W, Zhang Y P, et al. Biological carbon fixation: from natural to synthetic. Journal of CO2 Utilization, 2018, 28: 221-227.
[2] Matson M M, Atsumi S. Photomixotrophic chemical production in cyanobacteria. Current Opinion in Biotechnology, 2018, 50: 65-71.
doi: S0958-1669(17)30146-5 pmid: 29179151
[3] Hu G P, Li Y, Ye C, et al. Engineering microorganisms for enhanced CO2 sequestration. Trends in Biotechnology, 2019, 37(5): 532-547.
doi: 10.1016/j.tibtech.2018.10.008
[4] Barenholz U, Davidi D, Reznik E, et al. Design principles of autocatalytic cycles constrain enzyme kinetics and force low substrate saturation at flux branch points. eLife, 2017, 6: e20667.
doi: 10.7554/eLife.20667
[5] Knoot C J, Ungerer J, Wangikar P P, et al. Cyanobacteria: promising biocatalysts for sustainable chemical production. Journal of Biological Chemistry, 2018, 293(14): 5044-5052.
doi: 10.1074/jbc.R117.815886 pmid: 28972147
[6] Palovaara J, Akram N, Baltar F, et al. Stimulation of growth by proteorhodopsin phototrophy involves regulation of central metabolic pathways in marine planktonic bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(35): E3650-8.
[7] Yang F, Zhang J L, Cai Z, et al. Exploring the oxygenase function of Form II Rubisco for production of glycolate from CO2. AMB Express, 2021, 11(1): 65.
doi: 10.1186/s13568-021-01224-6 pmid: 33963929
[8] Liang F Y, Englund E, Lindberg P, et al. Engineered cyanobacteria with enhanced growth show increased ethanol production and higher biofuel to biomass ratio. Metabolic Engineering, 2018, 46: 51-59.
doi: S1096-7176(17)30416-0 pmid: 29477858
[9] Gao Z X, Zhao H, Li Z M, et al. Photosynthetic production of ethanol from carbon dioxide in genetically engineered cyanobacteria. Energy & Environmental Science, 2012, 5(12): 9857-9865.
[10] Ismail M M, Ismail G A, El-Sheekh M M. Potential assessment of some micro- and macroalgal species for bioethanol and biodiesel production. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2020, DOI: 10.1080/15567036.2020.1758853.
doi: 10.1080/15567036.2020.1758853
[11] Zhou J, Zhang F L, Meng H K, et al. Introducing extra NADPH consumption ability significantly increases the photosynthetic efficiency and biomass production of cyanobacteria. Metabolic Engineering, 2016, 38: 217-227.
doi: S1096-7176(16)30069-6 pmid: 27497972
[12] Treece T R, Gonzales J N, Pressley J R, et al. Synthetic biology approaches for improving chemical production in cyanobacteria. Frontiers in Bioengineering and Biotechnology, 2022, 10: 869195.
doi: 10.3389/fbioe.2022.869195
[13] Shinjinee S, Damini J, Annesha S, et al. Metabolic engineering of a fast-growing cyanobacterium Synechococcus elongatus PCC 11801 for photoautotrophic production of succinic acid. Biotechnology for Biofuels, 2020, 13(1): 89.
doi: 10.1186/s13068-020-01727-7
[14] Hirokawa Y, Goto R, Umetani Y, et al. Construction of a novel D-lactate producing pathway from dihydroxyacetone phosphate of the Calvin cycle in cyanobacterium, Synechococcus elongatus PCC7942. Journal of Bioscience and Bioengineering, 2017, 124(1): 54-61.
doi: 10.1016/j.jbiosc.2017.02.016
[15] Li C, Tao F, Ni J, et al. Enhancing the light-driven production of D-lactate by engineering cyanobacterium using a combinational strategy. Scientific Reports, 2015, 5(1): 9777.
doi: 10.1038/srep09777
[16] Mendez-Perez D, Begemann M B, Pfleger B F. Modular synthase-encoding gene involved in α-olefin biosynthesis in Synechococcus sp. strain PCC 7002. Applied and Environmental Microbiology, 2011, 77(12): 4264-4267.
doi: 10.1128/AEM.00467-11 pmid: 21531827
[17] Włodarczyk A, Selão T T, Norling B, et al. Newly discovered Synechococcus sp. PCC 11901 is a robust cyanobacterial strain for high biomass production. Communications Biology, 2020, 3: 215.
doi: 10.1038/s42003-020-0910-8 pmid: 32382027
[18] Ota M, Takenaka M, Sato Y, et al. Variation of photoautotrophic fatty acid production from a highly CO2 tolerant alga, Chlorococcum littorale, with inorganic carbon over narrow ranges of pH. Biotechnology Progress, 2015, 31(4): 1053-1057.
doi: 10.1002/btpr.2099
[19] Ortiz Montoya E Y, Casazza A A, Aliakbarian B, et al. Production of Chlorella vulgaris as a source of essential fatty acids in a tubular photobioreactor continuously fed with air enriched with CO2 at different concentrations. Biotechnology Progress, 2014, 30(4): 916-922.
doi: 10.1002/btpr.1885 pmid: 24532479
[20] Silambarasan S, Logeswari P, Sivaramakrishnan R, et al. Removal of nutrients from domestic wastewater by microalgae coupled to lipid augmentation for biodiesel production and influence of deoiled algal biomass as biofertilizer for Solanum lycopersicum cultivation. Chemosphere, 2021, 268: 129323.
doi: 10.1016/j.chemosphere.2020.129323
[21] Saliu F, Magoni C, Torelli A, et al. Omega-3 rich oils from microalgae: a chitosan mediated in situ transesterification method. Food Chemistry, 2021, 337: 127745.
doi: 10.1016/j.foodchem.2020.127745
[22] Li X P, Liu J P, Chen G Y, et al. Extraction and purification of eicosapentaenoic acid and docosahexaenoic acid from microalgae: a critical review. Algal Research, 2019, 43: 101619.
doi: 10.1016/j.algal.2019.101619
[23] Allen K M, Habte-Tsion H M, Thompson K R, et al. Freshwater microalgae (Schizochytrium sp.) as a substitute to fish oil for shrimp feed. Scientific Reports, 2019, 9: 6178.
doi: 10.1038/s41598-019-41020-8
[24] Salama E S, Hwang J H, El-Dalatony M M, et al. Enhancement of microalgal growth and biocomponent-based transformations for improved biofuel recovery: a review. Bioresource Technology, 2018, 258: 365-375.
doi: S0960-8524(18)30180-9 pmid: 29501272
[25] Kim H M, Oh C H, Bae H J. Comparison of red microalgae (Porphyridium cruentum) culture conditions for bioethanol production. Bioresource Technology, 2017, 233: 44-50.
doi: S0960-8524(17)30157-8 pmid: 28258995
[26] da Maia J L, Cardoso J S, da Silveira Mastrantonio D J, et al. Microalgae starch: a promising raw material for the bioethanol production. International Journal of Biological Macromolecules, 2020, 165: 2739-2749.
doi: 10.1016/j.ijbiomac.2020.10.159 pmid: 33470200
[27] Mathiot C, Ponge P, Gallard B, et al. Microalgae starch-based bioplastics: screening of ten strains and plasticization of unfractionated microalgae by extrusion. Carbohydrate Polymers, 2019, 208: 142-151.
doi: S0144-8617(18)31503-0 pmid: 30658785
[28] Matos J, Cardoso C, Gomes A, et al. Bioprospection of Isochrysis galbana and its potential as a nutraceutical. Food & Function, 2019, 10(11): 7333-7342.
[29] Lee H R, Kim K, Mun S C, et al. A new method to produce cellulose nanofibrils from microalgae and the measurement of their mechanical strength. Carbohydrate Polymers, 2018, 180: 276-285.
doi: 10.1016/j.carbpol.2017.09.104
[30] Rajendran L, Nagarajan N G, Karuppan M. Enhanced biomass and lutein production by mixotrophic cultivation of Scenedesmus sp. using crude glycerol in an airlift photobioreactor. Biochemical Engineering Journal, 2020, 161: 107684.
doi: 10.1016/j.bej.2020.107684
[31] Pourkarimi S, Hallajisani A, Alizadehdakhel A, et al. Factors affecting production of beta-carotene from Dunaliella salina microalgae. Biocatalysis and Agricultural Biotechnology, 2020, 29: 101771.
doi: 10.1016/j.bcab.2020.101771
[32] Mascia F, Girolomoni L, Alcocer M J P, et al. Functional analysis of photosynthetic pigment binding complexes in the green alga Haematococcus pluvialis reveals distribution of astaxanthin in photosystems. Scientific Reports, 2017, 7(1): 16319.
doi: 10.1038/s41598-017-16641-6
[33] Petrushkina M, Gusev E, Sorokin B, et al. Fucoxanthin production by heterokont microalgae. Algal Research, 2017, 24: 387-393.
doi: 10.1016/j.algal.2017.03.016
[34] Munawaroh H S H, Gumilar G G, Nurjanah F, et al. In-vitro molecular docking analysis of microalgae extracted phycocyanin as an anti-diabetic candidate. Biochemical Engineering Journal, 2020, 161: 107666.
doi: 10.1016/j.bej.2020.107666
[35] Vizcaíno A J, Sáez M I, Martínez T F, et al. Differential hydrolysis of proteins of four microalgae by the digestive enzymes of gilthead sea bream and Senegalese sole. Algal Research, 2019, 37: 145-153.
doi: 10.1016/j.algal.2018.11.018
[36] Qazi W M, Ballance S, Uhlen A K, et al. Protein enrichment of wheat bread with the marine green microalgae Tetraselmis chuii: impact on dough rheology and bread quality. LWT, 2021, 143: 111115.
doi: 10.1016/j.lwt.2021.111115
[37] Li Y C, Lammi C, Boschin G, et al. Recent advances in microalgae peptides: cardiovascular health benefits and analysis. Journal of Agricultural and Food Chemistry, 2019, 67(43): 11825-11838.
doi: 10.1021/acs.jafc.9b03566 pmid: 31588750
[38] Lin J Y, Tan S I, Yi Y C, et al. High-level production and extraction of C-phycocyanin from cyanobacteria Synechococcus sp. PCC 7002 for antioxidation, antibacterial and lead adsorption. Environmental Research, 2022, 206: 112283.
doi: 10.1016/j.envres.2021.112283
[39] Montalvo G E B, Thomaz-Soccol V, Vandenberghe L P S, et al. Arthrospira maxima OF15 biomass cultivation at laboratory and pilot scale from sugarcane vinasse for potential biological new peptides production. Bioresource Technology, 2019, 273: 103-113.
doi: S0960-8524(18)31513-X pmid: 30419445
[40] Samadhiya K, Ghosh A, Kashyap M, et al. Bioprospecting of native algal strains with unique lipids, proteins, and carbohydrates signatures: a time dependent study. Environmental Progress & Sustainable Energy, 2022, 41(2): e13735.
[41] Nybo S E, Khan N E, Woolston B M, et al. Metabolic engineering in chemolithoautotrophic hosts for the production of fuels and chemicals. Metabolic Engineering, 2015, 30: 105-120.
doi: S1096-7176(15)00061-0 pmid: 25959019
[42] Pan H J, Wang J, Wu H L, et al. Synthetic biology toolkit for engineering Cupriviadus necator H 16 as a platform for CO2 valorization. Biotechnology for Biofuels, 2021, 14(1): 212.
doi: 10.1186/s13068-021-02063-0
[43] Martin M E, Richter H, Saha S, et al. Traits of selected Clostridium strains for syngas fermentation to ethanol. Biotechnology and Bioengineering, 2016, 113(3): 531-539.
doi: 10.1002/bit.v113.3
[44] Liew F E, Nogle R, Abdalla T, et al. Carbon-negative production of acetone and isopropanol by gas fermentation at industrial pilot scale. Nature Biotechnology, 2022, 40(3): 335-344.
doi: 10.1038/s41587-021-01195-w
[45] Cheng C, Li W M, Lin M, et al. Metabolic engineering of Clostridium carboxidivorans for enhanced ethanol and butanol production from syngas and glucose. Bioresource Technology, 2019, 284: 415-423.
doi: S0960-8524(19)30519-X pmid: 30965197
[46] Liu C, Colón B C, Ziesack M, et al. Water splitting-biosynthetic system with CO2 reduction efficiencies exceeding photosynthesis. Science, 2016, 352(6290): 1210-1213.
doi: 10.1126/science.aaf5039
[47] Jugder B E, Lebhar H, Aguey-Zinsou K F, et al. Production and purification of a soluble hydrogenase from Ralstonia eutropha H16 for potential hydrogen fuel cell applications. MethodsX, 2016, 3: 242-250.
doi: 10.1016/j.mex.2016.03.005
[48] Schwarz F M, Moon J, Oswald F, et al. Biological hydrogen storage and release through multiple cycles of bi-directional hydrogenation of CO2 to formic acid in a single process unit. Joule, 2022, 6(6): 1304-1319.
doi: 10.1016/j.joule.2022.04.020
[49] Straub M, Demler M, Weuster-Botz D, et al. Selective enhancement of autotrophic acetate production with genetically modified Acetobacterium woodii. Journal of Biotechnology, 2014, 178: 67-72.
doi: 10.1016/j.jbiotec.2014.03.005
[50] Bayar B, Veiga M C, Kennes C. Bioproduction of acetic acid from carbon dioxide as single substrate and zero valent iron (ZVI) by clostridia. Journal of CO2 Utilization, 2022, 58: 101915.
[51] Herzog J, Mook A, Guhl L, et al. Novel synthetic co-culture of Acetobacterium woodii and Clostridium drakei using CO2 and in situ generated H2 for the production of caproic acid via lactic acid. Engineering in Life Sciences, 2023, 23(1): e2100169.
doi: 10.1002/elsc.v23.1
[52] Batlle-Vilanova P, Ganigué R, Ramió-Pujol S, et al. Microbial electrosynthesis of butyrate from carbon dioxide: production and extraction. Bioelectrochemistry, 2017, 117: 57-64.
doi: S1567-5394(17)30188-3 pmid: 28633067
[53] Huang H, Chai C S, Li N, et al. CRISPR/Cas9-based efficient genome editing in Clostridium ljungdahlii, an autotrophic gas-fermenting bacterium. ACS Synthetic Biology, 2016, 5(12): 1355-1361.
pmid: 27276212
[54] Amulya K, Mohan S V. Fixation of CO2, electron donor and redox microenvironment regulate succinic acid production in Citrobacter amalonaticus. Science of the Total Environment, 2019, 695: 133838.
doi: 10.1016/j.scitotenv.2019.133838
[55] Jin T Z, Wang Y J, Yao S, et al. Bioconversion of carbon dioxide to succinate by Citrobacter. Chemical Engineering Journal, 2023, 452: 139668.
doi: 10.1016/j.cej.2022.139668
[56] Keller M W, Schut G J, Lipscomb G L, et al. Exploiting microbial hyperthermophilicity to produce an industrial chemical, using hydrogen and carbon dioxide. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(15): 5840-5845.
[57] Maheshwari N, Kumar M, Thakur I S, et al. Carbon dioxide biofixation by free air CO2 enriched (FACE) bacterium for biodiesel production. Journal of CO2 Utilization, 2018, 27: 423-432.
[58] Panich J, Fong B, Singer S W. Metabolic engineering of Cupriavidus necator H16 for sustainable biofuels from CO2. Trends in Biotechnology, 2021, 39(4): 412-424.
doi: 10.1016/j.tibtech.2021.01.001
[59] Volova T G, Kiselev E G, Shishatskaya E I, et al. Cell growth and accumulation of polyhydroxyalkanoates from CO2 and H2 of a hydrogen-oxidizing bacterium, Cupriavidus eutrophus B-10646. Bioresource Technology, 2013, 146: 215-222.
doi: 10.1016/j.biortech.2013.07.070
[60] Islam Mozumder M S, Garcia-Gonzalez L, De Wever H, et al. Poly(3-hydroxybutyrate) (PHB) production from CO2: model development and process optimization. Biochemical Engineering Journal, 2015, 98: 107-116.
doi: 10.1016/j.bej.2015.02.031
[61] Tanaka K, Miyawaki K, Yamaguchi A, et al. Cell growth and P(3HB) accumulation from CO2 of a carbon monoxide-tolerant hydrogen-oxidizing bacterium, Ideonella sp. O-1. Applied Microbiology and Biotechnology, 2011, 92(6): 1161-1169.
doi: 10.1007/s00253-011-3420-2 pmid: 21695533
[62] Li Y J, Wang M M, Chen Y W, et al. Engineered yeast with a CO2-fixation pathway to improve the bio-ethanol production from xylose-mixed sugars. Scientific Reports, 2017, 7: 43875.
doi: 10.1038/srep43875
[63] Roger M, Brown F, Gabrielli W, et al. Efficient hydrogen-dependent carbon dioxide reduction by Escherichia coli. Current Biology, 2018, 28(1): 140-145, e2.
doi: 10.1016/j.cub.2017.11.050
[64] Hu G P, Zhou J, Chen X L, et al. Engineering synergetic CO2-fixing pathways for malate production. Metabolic Engineering, 2018, 47: 496-504.
doi: 10.1016/j.ymben.2018.05.007
[65] Antonovsky N, Gleizer S, Noor E, et al. Sugar synthesis from CO2 in Escherichia coli. Cell, 2016, 166(1): 115-125.
doi: 10.1016/j.cell.2016.05.064 pmid: 27345370
[66] Gleizer S, Ben-Nissan R, Bar-On Y M, et al. Conversion of Escherichia coli to generate all biomass carbon from CO2. Cell, 2019, 179(6): 1255-1263, e12.
doi: S0092-8674(19)31230-9 pmid: 31778652
[67] Gassler T, Sauer M, Gasser B, et al. The industrial yeast Pichia pastoris is converted from a heterotroph into an autotroph capable of growth on CO2. Nature Biotechnology, 2020, 38(2): 210-216.
doi: 10.1038/s41587-019-0363-0 pmid: 31844294
[68] Roger M, Reed T C P, Sargent F. Harnessing Escherichia coli for bio-based production of formate under pressurized H2 and CO2 gases. Applied and Environmental Microbiology, 2021, 87(21): e0029921.
doi: 10.1128/AEM.00299-21
[69] Zhu L W, Zhang L, Wei L N, et al. Collaborative regulation of CO2 transport and fixation during succinate production in Escherichia coli. Scientific Reports, 2015, 5: 17321.
doi: 10.1038/srep17321
[70] Baumschabl M, Ata Ö, Mitic B M, et al. Conversion of CO2 into organic acids by engineered autotrophic yeast. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(47): e2211827119.
[71] Yishai O, Bouzon M, Döring V, et al. In vivo assimilation of one-carbon via a synthetic reductive glycine pathway in Escherichia coli. ACS Synthetic Biology, 2018, 7(9): 2023-2028.
doi: 10.1021/acssynbio.8b00131 pmid: 29763299
[72] Figueroa I A, Barnum T P, Somasekhar P Y, et al. Metagenomics-guided analysis of microbial chemolithoautotrophic phosphite oxidation yields evidence of a seventh natural CO2 fixation pathway. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(1): E92-E101.
[73] Liu Z H, Wang K, Chen Y, et al. Third-generation biorefineries as the means to produce fuels and chemicals from CO2. Nature Catalysis, 2020, 3(3): 274-288.
doi: 10.1038/s41929-019-0421-5
[74] Shi L X, Theg S M. The chloroplast protein import system: from algae to trees. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 2013, 1833(2): 314-331.
doi: 10.1016/j.bbamcr.2012.10.002
[75] Liang F Y, Lindblad P. Synechocystis PCC 6803 overexpressing RuBisCO grow faster with increased photosynthesis. Metabolic Engineering Communications, 2017, 4: 29-36.
doi: 10.1016/j.meteno.2017.02.002
[76] Schwander T, Schada von Borzyskowski L, Burgener S, et al. A synthetic pathway for the fixation of carbon dioxide in vitro. Science, 2016, 354(6314): 900-904.
pmid: 27856910
[77] Cai T, Sun H B, Qiao J, et al. Cell-free chemoenzymatic starch synthesis from carbon dioxide. Science, 2021, 373(6562): 1523-1527.
doi: 10.1126/science.abh4049 pmid: 34554807
[78] Yang J G, Song W, Cai T, et al. De novo artificial synthesis of hexoses from carbon dioxide. Science Bulletin, 2023, 68(20): 2370-2381.
doi: 10.1016/j.scib.2023.08.023
[79] Xiao L, Liu G X, Gong F Y, et al. A minimized synthetic carbon fixation cycle. ACS Catalysis, 2022, 12(1): 799-808.
doi: 10.1021/acscatal.1c04151
[80] Liu J M, Zhang H, Xu Y Y, et al. Turn air-captured CO2 with methanol into amino acid and pyruvate in an ATP/NAD(P)H-free chemoenzymatic system. Nature Communications, 2023, 14(1): 2772.
doi: 10.1038/s41467-023-38490-w
[81] Luo S S, Lin P P, Nieh L Y, et al. A cell-free self-replenishing CO2-fixing system. Nature Catalysis, 2022, 5(2): 154-162.
doi: 10.1038/s41929-022-00746-x
[82] Song H, Choi O, Pandey A, et al. Simultaneous production of methane and acetate by thermophilic mixed culture from carbon dioxide in bioelectrochemical system. Bioresource Technology, 2019, 281: 474-479.
doi: S0960-8524(19)30323-2 pmid: 30853369
[83] Christodoulou X, Okoroafor T, Parry S, et al. The use of carbon dioxide in microbial electrosynthesis: advancements, sustainability and economic feasibility. Journal of CO2 Utilization, 2017, 18: 390-399.
[84] Schwarz Fabian M, Volker M. Whole-cell biocatalysis for hydrogen storage and syngas conversion to formate using a thermophilic acetogen. Biotechnology for Biofuels, 2020, 13(1): 32.
doi: 10.1186/s13068-020-1670-x
[85] Gomes M Z D, Masdeu G, Eiring P, et al. Improved biocatalytic cascade conversion of CO2 to methanol by enzymes co-immobilized in tailored siliceous mesostructured cellular foams. Catalysis Science & Technology, 2021, 11(21): 6952-6959.
[86] Papapetridis I, Goudriaan M, Vázquez M Y, et al. Optimizing anaerobic growth rate and fermentation kinetics in Saccharomyces cerevisiae strains expressing Calvin-cycle enzymes for improved ethanol yield. Biotechnology for Biofuels, 2018, 11: 17.
doi: 10.1186/s13068-017-1001-z pmid: 29416562
[87] Vajravel S, Sirin S, Kosourov S, et al. Towards sustainable ethylene production with cyanobacterial artificial biofilms. Green Chemistry, 2020, 22(19): 6404-6414.
doi: 10.1039/D0GC01830A
[88] Karekar S, Srinivas K, Ahring B. Kinetic study on heterotrophic growth of Acetobacterium woodii on lignocellulosic substrates for acetic acid production. Fermentation, 2019, 5(1): 17.
doi: 10.3390/fermentation5010017
[89] Lee T M, Tseng Y F, Cheng C L, et al. Characterization of a heat-tolerant Chlorella sp. GD mutant with enhanced photosynthetic CO2 fixation efficiency and its implication as lactic acid fermentation feedstock. Biotechnology for Biofuels, 2017, 10: 214.
doi: 10.1186/s13068-017-0905-y pmid: 28919927
[90] Wang Y P, Sun T, Gao X Y, et al. Biosynthesis of platform chemical 3-hydroxypropionic acid (3-HP) directly from CO2 in cyanobacterium Synechocystis sp. PCC 6803. Metabolic Engineering, 2016, 34: 60-70.
doi: 10.1016/j.ymben.2015.10.008
[91] Arslan K, Schoch T, Höfele F, et al. Engineering Acetobacterium woodii for the production of isopropanol and acetone from carbon dioxide and hydrogen. Biotechnology Journal, 2022, 17(5): e2100515.
[92] Hirokawa Y, Maki Y, Hanai T. Improvement of 1, 3-propanediol production using an engineered cyanobacterium, Synechococcus elongatus by optimization of the gene expression level of a synthetic metabolic pathway and production conditions. Metabolic Engineering, 2017, 39: 192-199.
doi: 10.1016/j.ymben.2016.12.001
[93] Savakis P, Tan X M, Du W, et al. Photosynthetic production of glycerol by a recombinant cyanobacterium. Journal of Biotechnology, 2015, 195: 46-51.
doi: 10.1016/j.jbiotec.2014.12.015 pmid: 25541461
[94] Lan E I, Liao J C. ATP drives direct photosynthetic production of 1-butanol in cyanobacteria. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(16): 6018-6023.
[95] Bai W, Ranaivoarisoa T O, Singh R, et al. n-Butanol production by Rhodopseudomonas palustris TIE-1. Communications Biology, 2021, 4(1): 1257.
doi: 10.1038/s42003-021-02781-z
[96] Kanno M, Carroll A L, Atsumi S. Global metabolic rewiring for improved CO2 fixation and chemical production in cyanobacteria. Nature Communications, 2017, 8: 14724.
doi: 10.1038/ncomms14724
[97] Jin S, Kang S, Bae J Y, et al. Development of CO gas conversion system using high CO tolerance biocatalyst. Chemical Engineering Journal, 2022, 449: 137678.
doi: 10.1016/j.cej.2022.137678
[98] Nozzi N E, Atsumi S. Genome engineering of the 2, 3-butanediol biosynthetic pathway for tight regulation in cyanobacteria. ACS Synthetic Biology, 2015, 4(11): 1197-1204.
doi: 10.1021/acssynbio.5b00057
[99] Jin S, Bae J Y, Song Y, et al. Synthetic biology on acetogenic bacteria for highly efficient conversion of C 1 gases to biochemicals. International Journal of Molecular Sciences, 2020, 21(20): 7639.
doi: 10.3390/ijms21207639
[100] Shen C R, Liao J C. Photosynthetic production of 2-methyl-1-butanol from CO2 in cyanobacterium Synechococcus elongatus PCC7942 and characterization of the native acetohydroxyacid synthase. Energy & Environmental Science, 2012, 5(11): 9574-9583.
[101] Yao L, Qi F X, Tan X M, et al. Improved production of fatty alcohols in cyanobacteria by metabolic engineering. Biotechnology for Biofuels, 2014, 7: 94.
doi: 10.1186/1754-6834-7-94 pmid: 25024742
[102] Gao X, Gao F, Liu D, et al. Engineering the methylerythritol phosphate pathway in cyanobacteria for photosynthetic isoprene production from CO2. Energy & Environmental Science, 2016, 9(4): 1400-1411.
[103] Zheng T T, Zhang M L, Wu L H, et al. Upcycling CO2 into energy-rich long-chain compounds via electrochemical and metabolic engineering. Nature Catalysis, 2022, 5(5): 388-396.
doi: 10.1038/s41929-022-00775-6
[104] Cheng D J, Li D J, Yuan Y Z, et al. Improving carbohydrate and starch accumulation in Chlorella sp. AE 10 by a novel two-stage process with cell dilution. Biotechnology for Biofuels, 2017, 10: 75.
doi: 10.1186/s13068-017-0753-9
[105] Zhang P, Chen K N, Xu B, et al. Chem-bio interface design for rapid conversion of CO2 to bioplastics in an integrated system. Chem, 2022, 8(12): 3363-3381.
doi: 10.1016/j.chempr.2022.09.005
[106] IEA. Energy technology perspectives 2020:special report on carbon capture utilisation and storage. [2023-09-02]. https://iea.blob.core.windows.net/assets/181b48b4-323f-454d-96fb-0bb1889d96a9/CCUS_in_clean_energy_transitions.pdf.
[107] IEA. Bioenergy with carbon capture and storage. [2023-07-11]. https://www.iea.org/reports/bioenergy-with-carbon-capture-and-storage.
[1] 李秋阳, 孙文涛, 秦磊, 吕波, 李春. 天然产物生物合成与微生物制造的挑战*[J]. 中国生物工程杂志, 2024, 44(1): 72-87.
[2] 伏家强, 李会, 王维龙, 王淑丽, 武胜, 邓庆博, 史劲松, 许正宏. 17α-羟基黄体酮C11α-羟化菌株的筛选及工艺优化*[J]. 中国生物工程杂志, 2023, 43(9): 19-32.
[3] 尚华蓉, 孙建中, 朱道辰. 微生物解聚木质素合成聚羟基脂肪酸脂的研究进展*[J]. 中国生物工程杂志, 2023, 43(2/3): 152-164.
[4] 贾男,臧国伟,李春,王颖. 辅因子在微生物细胞工厂中的代谢调控与应用*[J]. 中国生物工程杂志, 2022, 42(7): 79-89.
[5] 谢佳璇,刘旋,刘刚. 组织工程支架制备中超临界CO2技术的应用*[J]. 中国生物工程杂志, 2022, 42(4): 33-39.
[6] 章真,刘晓军,陈夏,姚丽萍,张荣庆. 微藻生物技术在碳中和的应用与展望*[J]. 中国生物工程杂志, 2022, 42(1/2): 160-173.
[7] 张耀,邱晓曼,孙浩,郭蕾,洪厚胜. 酿酒酵母的工业化应用[J]. 中国生物工程杂志, 2022, 42(1/2): 26-36.
[8] 吴晓燕,陈方,丁陈君,孙裕彤. 全球生物经济现状、趋势与融资前景分析*[J]. 中国生物工程杂志, 2021, 41(10): 116-126.
[9] 吴晓燕,陈方,丁陈君,郑颖,宋琪. 全球生物制造产业市场与融资现状分析*[J]. 中国生物工程杂志, 2020, 40(5): 117-124.
[10] 孙青,刘德华,陈振. 甲醇的生物利用与转化*[J]. 中国生物工程杂志, 2020, 40(10): 65-75.
[11] 左正三,郭东升,纪晓俊,宋萍,黄和. 肠道中多不饱和脂肪酸及其衍生物研究进展 *[J]. 中国生物工程杂志, 2018, 38(11): 66-75.
[12] 姚韧辉, 董卓, 李会. Gibberella intermedia C2转化4-雄甾烯-3、17-二酮的研究[J]. 中国生物工程杂志, 2017, 37(3): 73-77.
[13] 张璟, 张文强, 秦慧民, 毛淑红, 薛家禄, 路福平. 胆固醇7,8位脱氢酶的表达及催化活性研究[J]. 中国生物工程杂志, 2017, 37(1): 21-26.
[14] 张奇, 张露, 徐友强, 裴疆森, 程池. 生物转化法制备L-天冬酰胺[J]. 中国生物工程杂志, 2016, 36(1): 63-67.
[15] 张登央, 张英, 张丽君, 王妍. 3D技术制备骨修复生物材料的功能和安全性评价[J]. 中国生物工程杂志, 2015, 35(7): 55-61.