Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2024, Vol. 44 Issue (2/3): 124-133    DOI: 10.13523/j.cb.2308034
综述     
代谢酶与RNA相互作用的研究进展*
张竹玉,姜娜,陈瑞冰**()
天津大学药物科学与技术学院 天津 300072
Progress in Understanding the Interaction between Metabolic Enzymes and RNA
ZHANG Zhuyu,JIANG Na,CHEN Ruibing**()
School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
 全文: PDF(1162 KB)   HTML
摘要:

细胞代谢重编程对维持细胞稳态、细胞生长与增殖等细胞过程发挥着重要作用,并广泛参与恶性转化等病理过程。随着高通量分子检测技术的发展,人们发现有些代谢酶不仅能通过催化细胞内各种生化反应参与细胞代谢调控,同时还能结合RNA分子。这些代谢酶不具备经典的RNA结合域。已有研究显示它们可能通过一种负反馈机制调控其结合mRNA的运输、稳定性或翻译,从而将基因表达调控与细胞代谢联系起来。除此之外,酶的代谢产物也可能参与RNA与代谢酶相互作用的调控。重点从近年来发现的具备RNA结合能力的代谢酶、代谢酶与RNA的相互作用方式、RNA结合蛋白的鉴定与验证、代谢调控机制以及这些代谢酶与RNA相互作用如何调控复杂的细胞活动和疾病的发生发展过程进行综述。

关键词: RNA结合蛋白代谢酶细胞代谢蛋白质组学质谱    
Abstract:

Cellular metabolic reprogramming plays an important role in maintaining cellular homeostasis, cell growth and proliferation, and is widely involved in pathological processes such as malignant transformation. With the development of high-throughput molecular detection technology, it has been found that some metabolic enzymes can not only participate in the regulation of cellular metabolism by catalyzing a variety of intracellular biochemical reactions, but also bind to RNA molecules. These metabolic enzymes do not have classical RNA-binding domains, and it has been shown that they can regulate the transport, stability, or translation of their binding mRNA through a negative feedback mechanism, thereby linking the regulation of gene expression to cell metabolism. In addition, the metabolites of enzymes may also be involved in the regulation of the interaction between RNA and metabolic enzymes. This study reviews metabolic enzymes with RNA-binding ability, the interaction between metabolic enzymes and RNA, the identification and verification of RNA binding protein, metabolic regulation mechanisms, and how the interaction between these metabolic enzymes and RNA regulates complex cellular activities and the onset and development of disease.

Key words: RNA binding protein    Metabolic enzymes    Cell metabolism    Proteomics    Mass spectrometry
收稿日期: 2023-08-22 出版日期: 2024-04-03
ZTFLH:  Q71  
基金资助: *国家自然科学基金(21974094);2021年天津市研究生科研创新项目(2021YJSB192)
通讯作者: **电子信箱:rbchen@tju.edu.cn   
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张竹玉
姜娜
陈瑞冰

引用本文:

张竹玉, 姜娜, 陈瑞冰. 代谢酶与RNA相互作用的研究进展*[J]. 中国生物工程杂志, 2024, 44(2/3): 124-133.

ZHANG Zhuyu, JIANG Na, CHEN Ruibing. Progress in Understanding the Interaction between Metabolic Enzymes and RNA. China Biotechnology, 2024, 44(2/3): 124-133.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2308034        https://manu60.magtech.com.cn/biotech/CN/Y2024/V44/I2/3/124

图1  不同RNA-代谢酶相互作用模式示意图 A:与RNA的结合可能会影响酶在亚细胞结构中的定位 B:当RNA与酶结合时,可以进一步影响酶与其他亚基之间的相互作用 C:RNA可以作为桥梁连接通路中的多个酶
基因名称 蛋白质名称 蛋白质功能 与二核苷酸/单核
苷酸的结合情况
ADK 腺苷酸激酶 AMP生物合成 ATP和腺苷
ALDH18A1 1-吡咯啉-5羧酸合成酶 脯氨酸、鸟氨酸和精氨酸的生物合成 ATP和NADP
ALDH6A1 甲基丙二酸-半醛脱氢酶 缬氨酸和嘧啶代谢 NAD(P)/H
ALDOA 果糖二磷酸醛缩酶A 糖酵解
ASS1 精氨酸琥珀酸合酶 精氨酸生物合成 ATP
KAT3 3-犬尿氨酸 -酮戊二酸转氨酶 几种氨基酸的转氨酶活性
CS 柠檬酸合酶 三羧酸循环
DUT 脱氧尿苷5'-三磷酸核苷酸水解酶 核苷酸代谢 dUTP
ENO1 α-烯醇酶 糖酵解
FASN 脂肪酸合酶 脂肪酸合成 NADP/H
FDPS 焦磷酸合酶 法尼基二磷酸盐的形成
GOT2 天冬氨酸转氨酶 氨基酸代谢
HADHB 多功能酶亚基 脂肪酸的氧化
HK2 己糖激酶 糖酵解 ATP
HSD17B10 3-羟基酰基辅酶A脱氢酶 雄激素和雌激素17位β-氧化 NAD/NAD(P)
LTA4H 白三烯A4水解酶 白三烯B4的生物合成
MDH2 苹果酸脱氢酶 三羧酸循环 NAD/H
NME1 核苷二磷酸激酶A 三磷酸核苷的合成 ATP
NQO1 NAD(P)H脱氢酶 解毒途径和维生素K依赖的谷氨酸残基γ-羧化 NAD(P)H
PKM2 丙酮酸激酶 糖酵解 ATP
PPP1CC 丝氨酸/苏氨酸蛋白磷酸酶1 -γ催化亚单位 糖原代谢、肌肉收缩力和蛋白质合成
SUCLG1 琥珀酰辅酶A连接酶(ADP/ GDP形成)亚基α 三羧酸循环 ATP/GTP
TPI1 磷酸丙糖异构酶 糖酵解和糖异生
表1  RNA相互作用组研究发现的RNA结合代谢酶
图2  CLIP-seq的实验流程图
图3  胞质顺乌头酸酶1(ACO1)作为RNA结合代谢酶发挥作用 A:铁缺乏时,立方铁硫簇被分解,失活的IRP1与IREs结合,调节细胞内铁浓度 B:在铁充足的情况下,IRP1通过组装结合4Fe-4S簇,作为细胞质内的顺乌头酸酶发挥作用
图4  GAPDH作为淋巴细胞内一种RNA结合蛋白的生物功能 A:GAPDH与IFN-γ mRNA的3'UTR中的ARE结合会抑制IFN-γ在细胞中的翻译;B:T细胞活化并转向有氧糖酵解后,GAPDH主要参与糖酵解途径
[1] Ramanathan M, Porter D F, Khavari P A. Methods to study RNA-protein interactions. Nature Methods, 2019, 16: 225-234.
doi: 10.1038/s41592-019-0330-1 pmid: 30804549
[2] Hentze M W, Castello A, Schwarzl T, et al. A brave new world of RNA-binding proteins. Nature Reviews Molecular Cell Biology, 2018, 19: 327-341.
doi: 10.1038/nrm.2017.130 pmid: 29339797
[3] Chen R B, Liu Y, Zhuang H, et al. Quantitative proteomics reveals that long non-coding RNA MALAT1 interacts with DBC1 to regulate p53 acetylation. Nucleic Acids Research, 2017, 45(17): 9947-9959.
doi: 10.1093/nar/gkx600 pmid: 28973437
[4] Li D, Liu X F, Zhou J, et al. Long noncoding RNA HULC modulates the phosphorylation of YB-1 through serving as a scaffold of extracellular signal-regulated kinase and YB-1 to enhance hepatocarcinogenesis. Hepatology, 2017, 65(5): 1612-1627.
doi: 10.1002/hep.29010 pmid: 28027578
[5] Cooper T A, Wan L L, Dreyfuss G. RNA and disease. Cell, 2009, 136(4): 777-793.
doi: 10.1016/j.cell.2009.02.011 pmid: 19239895
[6] Gebauer F, Schwarzl T, Valcárcel J, et al. RNA-binding proteins in human genetic disease. Nature Reviews Genetics, 2021, 22: 185-198.
doi: 10.1038/s41576-020-00302-y pmid: 33235359
[7] Nussbacher J K, Batra R, Lagier-Tourenne C, et al. RNA-binding proteins in neurodegeneration: Seq and you shall receive. Trends in Neurosciences, 2015, 38(4): 226-236.
doi: 10.1016/j.tins.2015.02.003 pmid: 25765321
[8] Ciesla J. Metabolic enzymes that bind RNA: yet another level of cellular regulatory network?. Acta Biochimica Polonica, 2006, 53(1): 11-32.
pmid: 16410835
[9] Castello A, Hentze M W, Preiss T. Metabolic enzymes enjoying new partnerships as RNA-binding proteins. Trends in Endocrinology & Metabolism, 2015, 26(12): 746-757.
[10] Ovádi J, Srere P A. Macromolecular compartmentation and channeling. International Review of Cytology, 2000, 192: 255-280.
[11] Robinson J B, Inman L, Sumegi B, et al. Further characterization of the Krebs tricarboxylic acid cycle metabolon. Journal of Biological Chemistry, 1987, 262(4): 1786-1790.
pmid: 2433288
[12] Robinson J B, Srere P A. Organization of Krebs tricarboxylic acid cycle enzymes in mitochondria. Journal of Biological Chemistry, 1985, 260(19): 10800-10805.
pmid: 4030772
[13] Baltz A G, Munschauer M, Schwanhäusser B, et al. The mRNA-bound proteome and its global occupancy profile on protein-coding transcripts. Molecular Cell, 2012, 46(5): 674-690.
doi: 10.1016/j.molcel.2012.05.021 pmid: 22681889
[14] Castello A, Fischer B, Eichelbaum K, et al. Insights into RNA biology from an atlas of mammalian mRNA-binding proteins. Cell, 2012, 149(6): 1393-1406.
doi: 10.1016/j.cell.2012.04.031 pmid: 22658674
[15] Kwon S C, Yi H, Eichelbaum K, et al. The RNA-binding protein repertoire of embryonic stem cells. Nature Structural & Molecular Biology, 2013, 20: 1122-1130.
doi: 10.1038/nsmb.2638
[16] Li X, Tian B M, Deng D K, et al. LncRNA GACAT2 binds with protein PKM1/2 to regulate cell mitochondrial function and cementogenesis in an inflammatory environment. Bone Research, 2022, 10: 29.
doi: 10.1038/s41413-022-00197-x pmid: 35296649
[17] Wang C Q, Li Y M, Yan S, et al. Interactome analysis reveals that lncRNA HULC promotes aerobic glycolysis through LDHA and PKM2. Nature Communications, 2020, 11: 3162.
doi: 10.1038/s41467-020-16966-3 pmid: 32572027
[18] Li G Y, Liu L, Du W, et al. Local flux coordination and global gene expression regulation in metabolic modeling. Nature Communications, 2023, 14: 5700.
doi: 10.1038/s41467-023-41392-6 pmid: 37709734
[19] Curtis N J, Jeffery C J. The expanding world of metabolic enzymes moonlighting as RNA binding proteins. Biochemical Society Transactions, 2021, 49(3): 1099-1108.
doi: 10.1042/BST20200664 pmid: 34110361
[20] Basta M D, Petruk S, Mazo A, et al. Fibrosis-the tale of H3K 27 histone methyltransferases and demethylases. Frontiers in Cell and Developmental Biology, 2023, 11: 1193344.
doi: 10.3389/fcell.2023.1193344
[21] Nikolaou K C, Vatandaslar H, Meyer C, et al. The RNA-binding protein A1CF regulates hepatic fructose and glycerol metabolism via alternative RNA splicing. Cell Reports, 2019, 29(2): 283-300.e8.
doi: S2211-1247(19)31162-3 pmid: 31597092
[22] Chu E, Allegra C J. The role of thymidylate synthase as an RNA binding protein. BioEssays, 1996, 18(3): 191-198.
pmid: 8867733
[23] Matuszyk J. MALAT1-miRNAs network regulate thymidylate synthase and affect 5FU-based chemotherapy. Molecular Medicine, 2022, 28(1): 89.
[24] Xu D Q, Shao F, Bian X L, et al. The evolving landscape of noncanonical functions of metabolic enzymes in cancer and other pathologies. Cell Metabolism, 2021, 33(1): 33-50.
doi: 10.1016/j.cmet.2020.12.015 pmid: 33406403
[25] Clingman C C, Deveau L M, Hay S A, et al. Allosteric inhibition of a stem cell RNA-binding protein by an intermediary metabolite. eLife, 2014, 3: e02848.
doi: 10.7554/eLife.02848
[26] Wang Z M, Hao D, Zhao S Y, et al. Lactate and lactylation: clinical applications of routine carbon source and novel modification in human diseases. Molecular & Cellular Proteomics, 2023, 22(10): 100641.
[27] Xing S F, Poirier Y. The protein acetylome and the regulation of metabolism. Trends in Plant Science, 2012, 17(7): 423-430.
doi: 10.1016/j.tplants.2012.03.008 pmid: 22503580
[28] Rigaud V O C, Hoy R C, Kurian J, et al. RNA-binding protein LIN28a regulates new myocyte formation in the heart through long noncoding RNA-H19. Circulation, 2023, 147(4): 324-337.
doi: 10.1161/CIRCULATIONAHA.122.059346
[29] Bao X C, Guo X P, Yin M H, et al. Capturing the interactome of newly transcribed RNA. Nature Methods, 2018, 15: 213-220.
doi: 10.1038/nmeth.4595 pmid: 29431736
[30] Trendel J, Schwarzl T, Horos R, et al. The human RNA-binding proteome and its dynamics during translational arrest. Cell, 2019, 176(1-2): 391-403.e19.
doi: S0092-8674(18)31463-6 pmid: 30528433
[31] Queiroz R M L, Smith T, Villanueva E, et al. Comprehensive identification of RNA-protein interactions in any organism using orthogonal organic phase separation (OOPS). Nature Biotechnology, 2019, 37: 169-178.
doi: 10.1038/s41587-018-0001-2 pmid: 30607034
[32] Urdaneta E C, Vieira-Vieira C H, Hick T, et al. Purification of cross-linked RNA-protein complexes by phenol-toluol extraction. Nature Communications, 2019, 10: 990.
doi: 10.1038/s41467-019-08942-3 pmid: 30824702
[33] König J, Zarnack K, Luscombe N M, et al. Protein-RNA interactions: new genomic technologies and perspectives. Nature Reviews Genetics, 2012, 13: 77-83.
doi: 10.1038/nrg3141 pmid: 22251872
[34] Li J H, Liu S, Zhou H, et al. starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Research, 2014, 42(D1): D92-D97.
[35] Darnell R B. HITS-CLIP: panoramic views of protein-RNA regulation in living cells. Wiley Interdisciplinary Reviews RNA, 2010, 1(2): 266-286.
doi: 10.1002/wrna.v1:2
[36] Ascano M, Hafner M, Cekan P, et al. Identification of RNA-protein interaction networks using PAR-CLIP. Wiley Interdisciplinary Reviews RNA, 2012, 3(2): 159-177.
doi: 10.1002/wrna.v3.2
[37] Chu E, Voeller D, Koeller D M, et al. Identification of an RNA binding site for human thymidylate synthase. Proceedings of the National Academy of Sciences of the United States of America, 1993, 90(2): 517-521.
[38] Chu E, Voeller D M, Jones K L, et al. Identification of a thymidylate synthase ribonucleoprotein complex in human colon cancer cells. Molecular and Cellular Biology, 1994, 14(1): 207-213.
doi: 10.1128/mcb.14.1.207-213.1994 pmid: 8264588
[39] Constable A, Quick S, Gray N K, et al. Modulation of the RNA-binding activity of a regulatory protein by iron in vitro: switching between enzymatic and genetic function? Proceedings of the National Academy of Sciences of the United States of America, 1992, 89(10): 4554-4558.
[40] Hentze M W, Caughman S W, Rouault T A, et al. Identification of the iron-responsive element for the translational regulation of human ferritin mRNA. Science, 1987, 238(4833): 1570-1573.
pmid: 3685996
[41] Guo B, Yu Y, Leibold E A. Iron regulates cytoplasmic levels of a novel iron-responsive element-binding protein without aconitase activity. Journal of Biological Chemistry, 1994, 269(39): 24252-24260.
pmid: 7523370
[42] Hentze M W, Muckenthaler M U, Galy B, et al. Two to tango: regulation of mammalian iron metabolism. Cell, 2010, 142(1): 24-38.
doi: 10.1016/j.cell.2010.06.028 pmid: 20603012
[43] Zhang D L, Ghosh M C, Rouault T A. The physiological functions of iron regulatory proteins in iron homeostasis - an update. Frontiers in Pharmacology, 2014, 5: 124.
[44] Luscieti S, Tolle G, Aranda J, et al. Novel mutations in the ferritin-L iron-responsive element that only mildly impair IRP binding cause hereditary hyperferritinaemia cataract syndrome. Orphanet Journal of Rare Diseases, 2013, 8: 30.
doi: 10.1186/1750-1172-8-30 pmid: 23421845
[45] Walden W E, Selezneva A I, Dupuy J, et al. Structure of dual function iron regulatory protein 1 complexed with ferritin IRE-RNA. Science, 2006, 314(5807): 1903-1908.
pmid: 17185597
[46] Meyron-Holtz E G, Ghosh M C, Iwai K, et al. Genetic ablations of iron regulatory proteins 1 and 2 reveal why iron regulatory protein 2 dominates iron homeostasis. The EMBO Journal, 2004, 23(2): 386-395.
doi: 10.1038/sj.emboj.7600041
[47] Nagy E, Rigby W F C. Glyceraldehyde-3-phosphate dehydrogenase selectively binds AU-rich RNA in the NAD+-binding region (Rossmann fold). Journal of Biological Chemistry, 1995, 270(6): 2755-2763.
doi: 10.1074/jbc.270.6.2755 pmid: 7531693
[48] Dollenmaier G, Weitz M. Interaction of glyceraldehyde-3-phosphate dehydrogenase with secondary and tertiary RNA structural elements of the hepatitis A virus 3' translated and non-translated regions. The Journal of General Virology, 2003, 84(Pt 2): 403-414.
doi: 10.1099/vir.0.18501-0
[49] Mukhopadhyay R, Jia J, Arif A, et al. The GAIT system: a gatekeeper of inflammatory gene expression. Trends in Biochemical Sciences, 2009, 34(7): 324-331.
doi: 10.1016/j.tibs.2009.03.004 pmid: 19535251
[50] Chang C H, Curtis J D, Maggi L B Jr, et al. Posttranscriptional control of T cell effector function by aerobic glycolysis. Cell, 2013, 153(6): 1239-1251.
doi: 10.1016/j.cell.2013.05.016
[51] Ryazanov A G, Ashmarina L I, Muronetz V I. Association of glyceraldehyde-3-phosphate dehydrogenase with mono- and polyribosomes of rabbit reticulocytes. European Journal of Biochemistry, 1988, 171(1-2): 301-305.
pmid: 3276518
[52] Nagy E, Henics T, Eckert M, et al. Identification of the NAD+-binding fold of glyceraldehyde-3-phosphate dehydrogenase as a novel RNA-binding domain. Biochemical and Biophysical Research Communications, 2000, 275(2): 253-260.
pmid: 10964654
[53] Sirover M A. Pleiotropic effects of moonlighting glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in cancer progression, invasiveness, and metastases. Cancer and Metastasis Reviews, 2018, 37(4): 665-676.
doi: 10.1007/s10555-018-9764-7
[54] Du X L, Matsumura T, Edelstein D, et al. Inhibition of GAPDH activity by poly(ADP-ribose) polymerase activates three major pathways of hyperglycemic damage in endothelial cells. The Journal of Clinical Investigation, 2003, 112(7): 1049-1057.
doi: 10.1172/JCI18127
[55] Ravichandran V, Seres T, Moriguchi T, et al. S-thiolation of glyceraldehyde-3-phosphate dehydrogenase induced by the phagocytosis-associated respiratory burst in blood monocytes. Journal of Biological Chemistry, 1994, 269(40): 25010-25015.
pmid: 7929187
[56] Kondo S, Kubota S, Mukudai Y, et al. Binding of glyceraldehyde-3-phosphate dehydrogenase to the cis-acting element of structure-anchored repression in ccn2 mRNA. Biochemical and Biophysical Research Communications, 2011, 405(3): 382-387.
doi: 10.1016/j.bbrc.2011.01.034
[57] Hedstrom L. IMP dehydrogenase-linked retinitis pigmentosa. Nucleosides, Nucleotides & Nucleic Acids, 2008, 27(6): 839-849.
[58] Mortimer S E, Hedstrom L. Autosomal dominant retinitis pigmentosa mutations in inosine 5'-monophosphate dehydrogenase type I disrupt nucleic acid binding. The Biochemical Journal, 2005, 390(Pt 1): 41-47.
doi: 10.1042/BJ20042051
[59] Sakti D H, Cornish E E, Nash B M, et al. IMPDH1-associated autosomal dominant retinitis pigmentosa: natural history of novel variant Lys314Gln and a comprehensive literature search. Ophthalmic Genetics, 2023, 44(5): 437-455.
doi: 10.1080/13816810.2023.2215310
[60] He X Y, Dobkin C, Brown W T, et al. Infantile neurodegeneration results from mutants of 17β-hydroxysteroid dehydrogenase type 10 rather than aβ-binding alcohol dehydrogenase. International Journal of Molecular Sciences, 2023, 24(10): 8487.
[61] Oerum S, Roovers M, Rambo R P, et al. Structural insight into the human mitochondrial tRNA purine N1-methyltransferase and ribonuclease P complexes. The Journal of Biological Chemistry, 2018, 293(33): 12862-12876.
doi: 10.1074/jbc.RA117.001286
[62] Rauschenberger K, Schöler K, Sass J O, et al. A non-enzymatic function of 17beta-hydroxysteroid dehydrogenase type 10 is required for mitochondrial integrity and cell survival. EMBO Molecular Medicine, 2010, 2(2): 51-62.
doi: 10.1002/emmm.200900055 pmid: 20077426
[63] Deutschmann A J, Amberger A, Zavadil C, et al. Mutation or knock-down of 17β-hydroxysteroid dehydrogenase type 10 cause loss of MRPP1 and impaired processing of mitochondrial heavy strand transcripts. Human Molecular Genetics, 2014, 23(13): 3618-3628.
doi: 10.1093/hmg/ddu072 pmid: 24549042
[64] Xu D Q, Wang Z, Xia Y, et al. The gluconeogenic enzyme PCK1 phosphorylates INSIG1/2 for lipogenesis. Nature, 2020, 580: 530-535.
doi: 10.1038/s41586-020-2183-2
[65] Li X J, Egervari G, Wang Y G, et al. Regulation of chromatin and gene expression by metabolic enzymes and metabolites. Nature Reviews Molecular Cell Biology, 2018, 19: 563-578.
doi: 10.1038/s41580-018-0029-7 pmid: 29930302
[1] 孙若航, 陈瑞冰. RNA结合蛋白质谱鉴定技术研究进展*[J]. 中国生物工程杂志, 2023, 43(7): 77-87.
[2] 徐颖, 王雪, 王倩倩, 朱云平, 贾辰熙. 小鼠垂体瘤细胞冷暴露后蛋白质甲基化修饰分析*[J]. 中国生物工程杂志, 2023, 43(7): 12-22.
[3] 靳倩, 时梦, 刘占彪, 张毅, 朱思庆, 石晶晶, 宗星星, 陈学军, 李丽琴. 亚急性梭曼染毒豚鼠颈部脊髓差异表达蛋白分析[J]. 中国生物工程杂志, 2023, 43(2/3): 64-74.
[4] 刘平阳, 刘占芳, 周红, 朱军, 刘耀. 生物质谱分析法在脂质组学的应用[J]. 中国生物工程杂志, 2023, 43(1): 87-103.
[5] 王宇航, 陈学明, 刘俗生, 阮志军, 张敏, 宋春丽, 尹丰, 李子刚. 一种多肽固相合成方法与纯化策略研究[J]. 中国生物工程杂志, 2023, 43(1): 35-41.
[6] 张杰, 林炳锋, 许平翠, 王娜妮, 陈郁. 麦冬提取物治疗2型糖尿病小鼠的血清代谢组学研究*[J]. 中国生物工程杂志, 2022, 42(11): 99-108.
[7] 赖木兰, 陈雪岚. 蛋白质赖氨酸乙酰化修饰对中间代谢的调控研究[J]. 中国生物工程杂志, 2017, 37(9): 126-133.
[8] 陈娟, 杨慧林, 黄运红, 龙中儿. 炭样小单孢菌中抗生素生物合成相关蛋白的筛选[J]. 中国生物工程杂志, 2016, 36(7): 55-63.
[9] 吕珊珊, 侯运华, 闫孟节, 钟耀华. 工业真菌高效产酶突变技术与高产机制[J]. 中国生物工程杂志, 2016, 36(3): 111-119.
[10] 梁丽珠, 孙佳楠, 李恺, 刘明伟, 丁琛, 秦钧. 蛋白质组分析油酸对HepG2细胞转录因子DNA结合活性的影响[J]. 中国生物工程杂志, 2015, 35(5): 22-31.
[11] 张砚君, 刘荣, 张梦楠, 苗庆芳, 甄永苏, 熊冬生, 张益芝. IL3融合蛋白稳定性分析、改造及活性研究[J]. 中国生物工程杂志, 2013, 33(3): 117-122.
[12] 贾伟, 陈熙, 周春喜, 宋兰坤. 单克隆抗体仿制药物的结构分析策略[J]. 中国生物工程杂志, 2012, 32(10): 93-98.
[13] 张媛媛, 胡启蒙, 王亮亮, 李新红. 哺乳动物精子磷酸化蛋白质组学研究进展[J]. 中国生物工程杂志, 2012, 32(04): 76-82.
[14] 闫慧, 黄文芳, 杨永长, 肖代雯, 姜伟, 罗春丽. 临床常见革兰氏阳性球菌蛋白指纹库的构建[J]. 中国生物工程杂志, 2011, 31(10): 95-99.
[15] 葛伟峰, 储消和, 王永红, 张嗣良. 应用于二维电泳细胞蛋白质样品提取的复合蛋白酶抑制剂的优化[J]. 中国生物工程杂志, 2010, 30(12): 66-71.