Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2024, Vol. 44 Issue (2/3): 134-141    DOI: 10.13523/j.cb.2308027
综述     
细胞外囊泡表面蛋白冠的研究进展*
王珊,曹玉林,吴迪,屈姣,余娅丽,李秋柏**()
华中科技大学同济医学院附属协和医院 武汉 430000
Research Progress in Protein Corona of Extracellular Vesicles
WANG Shan,CAO Yulin,WU Di,QU Jiao,YU Yali,LI Qiubai**()
Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
 全文: PDF(576 KB)   HTML
摘要:

细胞外囊泡是细胞释放的具有磷脂双层膜结构的天然纳米颗粒,参与体内细胞信号转导、肿瘤发生发展、免疫调节、延缓衰老等多种生理病理过程,在疾病诊断及治疗中表现出巨大潜力。既往研究认为,高纯度细胞外囊泡的制备易受杂质蛋白污染,制约了细胞外囊泡在生物标志物和药物运载系统方面的研究及转化应用。近两年,部分学者将合成纳米颗粒领域的蛋白冠这一概念引入细胞外囊泡领域,认为蛋白冠是细胞外囊泡表面的固有成分,并显著影响细胞外囊泡的生物学功能,为细胞外囊泡研究提供了新思路。概述了当前细胞外囊泡表面蛋白冠的研究现状,围绕该蛋白冠的形成过程、化学组成、生物功能、鉴定方法等展开,以期为细胞外囊泡及其蛋白冠的进一步研究提供参考。

关键词: 细胞外囊泡蛋白冠纳米颗粒    
Abstract:

Extracellular vesicles are natural nanoparticles with a phospholipid bilayer membrane structure released by cells. They play a vital role in various physiological and pathological processes such as cell signaling, tumor development, immune regulation, and rejuvenation during aging. They have immense potential in the diagnosis and treatment of disease. Previous research has shown that the preparation of extracellular vesicles is prone to protein contamination, which limits their research and translational applications in biomarkers and drug delivery. In recent years, some scholars have introduced the concept of “protein corona” to the field of extracellular vesicles, which is proven to be an important structure for synthetic nanoparticles. They propose that the protein corona is an intrinsic component of the extracellular vesicle and significantly influences its biological functionality. This challenges the traditional view of protein contamination and leads to a paradigm shift in extracellular vesicle research. This review provides an overview of the current state of research on the protein corona on the surface of extracellular vesicles. It covers aspects such as the formation process, chemical composition, biological functions, and identification methods of this protein corona. This review may serve as a reference for the further study of extracellular vesicles and their protein corona.

Key words: Extracellular vesicles    Protein corona    Nanoparticles
收稿日期: 2023-08-21 出版日期: 2024-04-03
ZTFLH:  Q816  
基金资助: *十四五国家重点研发计划“干细胞研究与器官修复”重点专项(2021YFA1101500);湖北省自然科学基金(2022CFA019)
通讯作者: **电子信箱:qiubaili@hust.edu.cn   
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王珊
曹玉林
吴迪
屈姣
余娅丽
李秋柏

引用本文:

王珊, 曹玉林, 吴迪, 屈姣, 余娅丽, 李秋柏. 细胞外囊泡表面蛋白冠的研究进展*[J]. 中国生物工程杂志, 2024, 44(2/3): 134-141.

WANG Shan, CAO Yulin, WU Di, QU Jiao, YU Yali, LI Qiubai. Research Progress in Protein Corona of Extracellular Vesicles. China Biotechnology, 2024, 44(2/3): 134-141.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2308027        https://manu60.magtech.com.cn/biotech/CN/Y2024/V44/I2/3/134

图1  EVs蛋白冠模型与传统EVs模型的比较
理化性质 鉴定方法 参考文献
结构特征 微流控电阻脉冲传感(MRPS)
极小角度中子散射(VSANS)
[42]
化学组分 质谱分析(MS) [28,32]
EVs-蛋白质相互作用 Uniprot数据库
STRING数据库
[28]
形态特征 共聚焦显微镜(CLSM)
免疫电镜(IEM)
透射电镜(TEM)
[28,31]
表1  EVs蛋白冠的鉴定与表征方法
[1] Colombo M, Raposo G, Théry C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annual Review of Cell and Developmental Biology, 2014, 30: 255-289.
doi: 10.1146/annurev-cellbio-101512-122326 pmid: 25288114
[2] Zhang X, Zhang H B, Gu J M, et al. Engineered extracellular vesicles for cancer therapy. Advanced Materials, 2021, 33(14): e2005709.
[3] Pourali G, Zafari N, Fiuji H, et al. Extracellular vesicles: emerging mediators of cell communication in gastrointestinal cancers exhibiting metabolic abnormalities. Cytokine & Growth Factor Reviews, 2023, 73: 101-113.
[4] Lei Q, Gao F, Liu T, et al. Extracellular vesicles deposit PCNA to rejuvenate aged bone marrow-derived mesenchymal stem cells and slow age-related degeneration. Science Translational Medicine, 2021, 13(578): eaaz8697.
[5] Hansen A S, Jensen L S, Gammelgaard K R, et al. T-cell derived extracellular vesicles prime macrophages for improved STING based cancer immunotherapy. Journal of Extracellular Vesicles, 2023, 12(8): e12350.
[6] Peng Y Q, Deng X H, Xu Z B, et al. Mesenchymal stromal cells and their small extracellular vesicles in allergic diseases: from immunomodulation to therapy. European Journal of Immunology, 2023, 53(10): e2149510.
[7] Sódar B W, Kittel Á, Pálóczi K, et al. Low-density lipoprotein mimics blood plasma-derived exosomes and microvesicles during isolation and detection. Scientific Reports, 2016, 6: 24316.
doi: 10.1038/srep24316 pmid: 27087061
[8] Simonsen J B. What are we looking at? extracellular vesicles, lipoproteins, or both? Circulation Research, 2017, 121(8): 920-922.
doi: 10.1161/CIRCRESAHA.117.311767 pmid: 28963190
[9] Karimi N, Cvjetkovic A, Jang S C, et al. Detailed analysis of the plasma extracellular vesicle proteome after separation from lipoproteins. Cellular and Molecular Life Sciences, 2018, 75(15): 2873-2886.
doi: 10.1007/s00018-018-2773-4 pmid: 29441425
[10] Théry C, Witwer K W, Aikawa E, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. Journal of Extracellular Vesicles, 2018, 7(1): 1535750.
[11] Onishchenko N, Tretiakova D, Vodovozova E. Spotlight on the protein corona of liposomes. Acta Biomaterialia, 2021, 134: 57-78.
doi: 10.1016/j.actbio.2021.07.074 pmid: 34364016
[12] Wang W H, Huang Z W, Li Y B, et al. Impact of particle size and pH on protein corona formation of solid lipid nanoparticles: a proof-of-concept study. Acta Pharmaceutica Sinica B, 2021, 11(4): 1030-1046.
doi: 10.1016/j.apsb.2020.10.023 pmid: 33996415
[13] Ezzat K, Pernemalm M, Pålsson S, et al. The viral protein corona directs viral pathogenesis and amyloid aggregation. Nature Communications, 2019, 10: 2331.
doi: 10.1038/s41467-019-10192-2 pmid: 31133680
[14] Tang H, Zhang Y, Yang T, et al. Cholesterol modulates the physiological response to nanoparticles by changing the composition of protein corona. Nature Nanotechnology, 2023, 18: 1067-1077.
doi: 10.1038/s41565-023-01455-7 pmid: 37537273
[15] Mahmoudi M, Landry M P, Moore A, et al. The protein corona from nanomedicine to environmental science. Nature Reviews Materials, 2023, 8: 422-438.
doi: 10.1038/s41578-023-00552-2
[16] 褚宇琦, 陆飞妃, 刘洋, 等. 蛋白冠与纳米粒子的相互作用. 中国生物工程杂志, 2020, 40(4): 78-83.
Chu Y Q, Lu F F, Liu Y, et al. Interaction between protein Corona and nanoparticles. China Biotechnology, 2020, 40(4): 78-83.
[17] Buzás E I, Tóth E Á, Sódar B W, et al. Molecular interactions at the surface of extracellular vesicles. Seminars in Immunopathology, 2018, 40(5): 453-464.
doi: 10.1007/s00281-018-0682-0 pmid: 29663027
[18] Santucci L, Bruschi M, Del Zotto G, et al. Biological surface properties in extracellular vesicles and their effect on cargo proteins. Scientific Reports, 2019, 9: 13048.
doi: 10.1038/s41598-019-47598-3 pmid: 31506490
[19] Meneghetti M C Z, Hughes A J, Rudd T R, et al. Heparan sulfate and heparin interactions with proteins. Journal of the Royal Society, Interface, 2015, 12(110): 0589.
[20] Sung B H, Ketova T, Hoshino D, et al. Directional cell movement through tissues is controlled by exosome secretion. Nature Communications, 2015, 6: 7164.
doi: 10.1038/ncomms8164 pmid: 25968605
[21] van Niel G, Bergam P, Di Cicco A, et al. Apolipoprotein E regulates amyloid formation within endosomes of pigment cells. Cell Reports, 2015, 13(1): 43-51.
doi: S2211-1247(15)00954-7 pmid: 26387950
[22] Buzas E I. Opportunities and challenges in studying the extracellular vesicle corona. Nature Cell Biology, 2022, 24: 1322-1325.
doi: 10.1038/s41556-022-00983-z
[23] Solvik T A, Nguyen T A, Lin Y H T, et al. Secretory autophagy maintains proteostasis upon lysosome inhibition. The Journal of Cell Biology, 2022, 221(6): e202110151.
[24] Palviainen M, Saraswat M, Varga Z, et al. Extracellular vesicles from human plasma and serum are carriers of extravesicular cargo-Implications for biomarker discovery. PLoS One, 2020, 15(8): e0236439.
[25] Heidarzadeh M, Zarebkohan A, Rahbarghazi R, et al. Protein corona and exosomes: new challenges and prospects. Cell Communication and Signaling, 2023, 21(1): 64.
[26] Ahsan S M, Rao C M, Ahmad M F. Nanoparticle-protein interaction: the significance and role of protein corona. Advances in Experimental Medicine and Biology, 2018, 1048: 175-198.
doi: 10.1007/978-3-319-72041-8_11 pmid: 29453539
[27] Pederzoli F, Tosi G, Vandelli M A, et al. Protein corona and nanoparticles: how can we investigate on? WIREs Nanomedicine and Nanobiotechnology, 2017, 9(6): e1467.
[28] Tóth E Á, Turiák L, Visnovitz T, et al. Formation of a protein corona on the surface of extracellular vesicles in blood plasma. Journal of Extracellular Vesicles, 2021, 10(11): e12140.
doi: 10.1002/jev2.v10.11
[29] 吕鹏. 胞外囊泡作为纳米载体用于靶向给药的初步研究与应用. 厦门: 厦门大学, 2019.
Lv P. Preliminary study and application of extracellular vesicles as nanocarriers for targeted drug delivery. Xiamen: Xiamen University, 2019.
[30] Yerneni S S, Solomon T, Smith J, et al. Radioiodination of extravesicular surface constituents to study the biocorona, cell trafficking and storage stability of extracellular vesicles. Biochimica et Biophysica Acta (BBA) - General Subjects, 2022, 1866(2): 130069.
[31] Wolf M, Poupardin R W, Ebner-Peking P, et al. A functional corona around extracellular vesicles enhances angiogenesis, skin regeneration and immunomodulation. Journal of Extracellular Vesicles, 2022, 11(4): e12207.
doi: 10.1002/jev2.v11.4
[32] Gomes F G, Andrade A C, Wolf M, et al. Synergy of human platelet-derived extracellular vesicles with secretome proteins promotes regenerative functions. Biomedicines, 2022, 10(2): 238.
[33] Witwer K W, Wolfram J. Extracellular vesicles versus synthetic nanoparticles for drug delivery. Nature Reviews Materials, 2021, 6: 103-106.
doi: 10.1038/s41578-020-00277-6 pmid: 36117545
[34] Busatto S, Yang Y B, Walker S A, et al. Brain metastases-derived extracellular vesicles induce binding and aggregation of low-density lipoprotein. Journal of Nanobiotechnology, 2020, 18(1): 162.
[35] Németh A, Orgovan N, Sódar B W, et al. Antibiotic-induced release of small extracellular vesicles (exosomes) with surface-associated DNA. Scientific Reports, 2017, 7: 8202.
doi: 10.1038/s41598-017-08392-1 pmid: 28811610
[36] Vrablova V, Kosutova N, Blsakova A, et al. Glycosylation in extracellular vesicles: isolation, characterization, composition, analysis and clinical applications. Biotechnology Advances, 2023, 67: 108196.
doi: 10.1016/j.biotechadv.2023.108196
[37] Carrillo-Rodríguez P, Robles-Guirado J Á, Cruz-Palomares A, et al. Extracellular vesicles from pristane-treated CD38-deficient mice express an anti-inflammatory neutrophil protein signature, which reflects the mild lupus severity elicited in these mice. Frontiers in Immunology, 2022, 13: 1013236.
doi: 10.3389/fimmu.2022.1013236
[38] Skliar M, Chernyshev V S, Belnap D M, et al. Membrane proteins significantly restrict exosome mobility. Biochemical and Biophysical Research Communications, 2018, 501(4): 1055-1059.
doi: S0006-291X(18)31170-7 pmid: 29777705
[39] Monguió-Tortajada M, Gálvez-Montón C, Bayes-Genis A, et al. Extracellular vesicle isolation methods: rising impact of size-exclusion chromatography. Cellular and Molecular Life Sciences, 2019, 76(12): 2369-2382.
doi: 10.1007/s00018-019-03071-y pmid: 30891621
[40] Kristensen K, Münter R, Kempen P J, et al. Isolation methods commonly used to study the liposomal protein corona suffer from contamination issues. Acta Biomaterialia, 2021, 130: 460-472.
doi: 10.1016/j.actbio.2021.06.008 pmid: 34116227
[41] Mahmoudi M. The need for improved methodology in protein corona analysis. Nature Communications, 2022, 13: 49.
doi: 10.1038/s41467-021-27643-4 pmid: 35013179
[42] Varga Z, Fehér B, Kitka D, et al. Size measurement of extracellular vesicles and synthetic liposomes: the impact of the hydration shell and the protein Corona. Colloids and Surfaces B: Biointerfaces, 2020, 192: 111053.
doi: 10.1016/j.colsurfb.2020.111053
[1] 刘霖颖, 沈洁, 陈亮, 张虎成, 赵新颖. 仿生纳米载药体系的制备及在疾病治疗中的应用*[J]. 中国生物工程杂志, 2023, 43(7): 114-121.
[2] 王泽华, 张丽昀, 马春燕. 间充质干细胞来源细胞外囊泡对肺部疾病作用研究进展*[J]. 中国生物工程杂志, 2023, 43(5): 76-84.
[3] 蔡年桂, 陈欣, 张清源, 底浩楠, 詹小贞, 陈军岩, 陈昊, 颜晓梅. 窥探纳米世界:纳米流式检测技术的研发及单颗粒水平表征应用*[J]. 中国生物工程杂志, 2023, 43(12): 1-13.
[4] 黄纪安,李婉萌,刘薇,齐梓彤,赵亮. 铜纳米颗粒对缺血性卒中后神经血管单元的保护作用[J]. 中国生物工程杂志, 2022, 42(12): 1-11.
[5] 李佳欣,张正,刘赫,杨青,吕成志,杨君. 角蛋白载药纳米颗粒的制备及药物可控释放性能研究*[J]. 中国生物工程杂志, 2021, 41(8): 8-16.
[6] 陈东,李程程,史仲平. 植物乳杆菌胞外多糖包覆的高稳定性硒纳米颗粒的制备及其抗氧化活性的研究*[J]. 中国生物工程杂志, 2020, 40(9): 18-27.
[7] 褚宇琦,陆飞妃,刘洋,何芳,王大壮,陈立江. 蛋白冠与纳米粒子的相互作用 *[J]. 中国生物工程杂志, 2020, 40(4): 78-83.
[8] 方元,张同伟,曹长乾,田杰生,林巍. 趋磁细菌多样性与应用研究进展 *[J]. 中国生物工程杂志, 2019, 39(12): 73-82.
[9] 王方旭,陈玉玲,耿读艳,陈传芳. 趋磁细菌及磁小体的生物医学应用研究进展 *[J]. 中国生物工程杂志, 2018, 38(9): 74-80.
[10] 袁亚莉, 许金生, 邓健, 唐国华, 许金华. CD45新型免疫荧光标记与检测方法研究[J]. 中国生物工程杂志, 2005, 25(02): 73-75,77.
[11] 金华利, 张富春, 张爱莲, 李轶杰, 王宾. 钠米颗粒介导质粒DNA转染体外真核细胞[J]. 中国生物工程杂志, 2003, 23(10): 71-75.