Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2024, Vol. 44 Issue (1): 142-151    DOI: 10.13523/j.cb.2307034
技术情报     
生物基材料研发态势分析*
江洪1,2,**(),李晓南1,2,高倩1,张宏翔3,4
1 中国科学院武汉文献情报中心 武汉 430071
2 中国科学院大学经济与管理学院 北京 101408
3 中国科学院文献情报中心 北京 100190
4 中国生物工程学会 北京 100101
Analysis of Bio-based Materials Development and R&D Trend
Hong JIANG1,2,**(),Xiaonan LI1,2,Qian GAO1,Hongxiang ZHANG3,4
1 Wuhan Library, Chinese Academy of Sciences, Wuhan 430071, China
2 School of Economics and Management, University of Chinese Academy of Sciences, Beijing 101408, China
3 National Science Library, Chinese Academy of Sciences, Beijing 100190, China
4 Chinese Society of Biotechnology, Beijing 100101, China
 全文: PDF(1441 KB)   HTML
摘要:

近年来,绿色低碳、环境友好、资源节约的生物基材料(bio-based materials)在生产生活中的应用规模不断扩大。基于Incopat专利数据库,梳理近五年世界范围内生物基材料领域的专利,分析其主要技术构成、主题聚类及高价值专利,并综合国内外热点文献,深入剖析生物基塑料、生物基化学纤维、生物基橡胶、生物基涂料、生物基材料助剂、生物基复合材料及其他生物基制品等不同类型生物基材料的研究现状与应用前景。

关键词: 生物基材料生物基塑料生物基化学纤维生物基橡胶生物基涂料    
Abstract:

In recent years, the range of applications for green, low-carbon, environmentally-friendly and resource-saving bio-based materials in production and life has expandecl. This paper uses the Incopat patent database to analyze the main technology composition, thematic clustering, and high-value patents in bio-based materials around the world over the past five years, and reviews the hot-spot literature at home and abroad to analyze the research status and prospects for the application of different types of bio-based materials, such as bio-based plastics, bio-based chemical fibers, bio-based rubber, bio-based coatings, bio-based material auxiliaries, bio-based composites and other bio-based products.

Key words: Bio-based materials    Bio-based plastics    Bio-based chemical fibers    Bio-based rubber    Bio-based coatings
收稿日期: 2023-07-25 出版日期: 2024-02-04
ZTFLH:  Q81  
基金资助: *国家社会科学基金(21CTQ013)
通讯作者: ** 电子信箱:jianghong@mail.whlib.ac.cn   
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
江洪
李晓南
高倩
张宏翔

引用本文:

江洪, 李晓南, 高倩, 张宏翔. 生物基材料研发态势分析*[J]. 中国生物工程杂志, 2024, 44(1): 142-151.

Hong JIANG, Xiaonan LI, Qian GAO, Hongxiang ZHANG. Analysis of Bio-based Materials Development and R&D Trend. China Biotechnology, 2024, 44(1): 142-151.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2307034        https://manu60.magtech.com.cn/biotech/CN/Y2024/V44/I1/142

一级分类 二级分类 三级分类
生物基材料 生物基化学品 -
聚合物 生物基聚合物
生物聚合物
天然高分子
塑料 生物基塑料
生物塑料
生物基化学纤维 生物基可再生纤维
生物基合成纤维
海洋生物基纤维
生物基橡胶 -
生物基涂料 -
生物基材料助剂 生物基增塑剂
生物基阻燃剂
生物基胶粘剂
生物基润滑剂
生物基清洁剂
生物基表面活性剂
生物基其他助剂
生物基复合材料 淀粉基塑料材料及制品
木塑材料或塑木材料
竹塑材料
表1  生物基材料分类概览
排名 IPC分类号(大组) 专利数量 释义
1 C08L67 234 由主链中形成一个羧酸酯键反应得到的聚酯的组合物(有关聚酯-酰胺入C08L77/12;有关聚酯-酰亚胺入C08L79/08);此种聚合物衍生物的组合物
2 C08K5 191 使用有机配料
3 C08K3 185 使用无机物质作为混合配料
4 A61L27 157 假体材料或假体被覆材料(假牙入A61C13/00;假体的形状或结构入A61F2/00;假牙配制品的应用入A61K6/80;人工肾脏入A61M1/14)
5 C08J5 154 含有高分子物质的制品或成形材料的制造(半透膜的制造入B01D67/00至B01D71/00)
6 C08L3 143 淀粉、直链淀粉或支链淀粉或其衍生物或降解产物的组合物
7 C08L23 141 只有一个碳-碳双键的不饱和脂族烃的均聚物或共聚物的组合物,此种聚合物衍生物的组合物
8 C08L97 130 含木质素材料的组合物(多糖的组合物入C08L1/00至C08L5/00)
9 C08L1 124 纤维素、改性纤维素或纤维素衍生物的组合物
10 C08J3 110 高分子物质的处理或配料的工艺过程
表2  近五年专利技术构成情况分析
图1  近五年全球不同地域专利技术构成情况
图2  近五年专利主题聚类沙盘 波峰代表技术密集区,波谷代表技术空白点,不同颜色点分别代表中国、美国、韩国、印度在不同聚类主题上的专利分布情况,紫色标志代表不同聚类主题专利中的高价值专利
专利号 专利名称 申请人 专利申请日
US20210263011A1 固态纳米孔和纳米孔阵列的化学功能化及其应用 Trustees of Boston University 2021-04-27
JP2022066228A 生物基聚对苯二甲酸乙二醇酯包装体及其制造方法 The Coca Cola Company 2022-02-10
JP2021104040A 重组微生物显示通过发酵途径的通量增加 Lanzatech New Zealand Ltd. 2021-03-31
US20200239830A1 制备真菌生物聚合物的方法 Ecovative Design Llc. 2020-01-27
US20220202687A1 生物基聚合物在化妆品、皮肤病学或药物组合物中的用途 Clariant International Ltd. 2022-03-18
US20220169804A1 生物聚合物的脱乙酰化方法 Galderma Holding Sa 2021-12-13
WO2019155398A1 可生物降解塑料 Csir 2019-02-07
US11525024B2 来自原始木质纤维素生物质的生物基聚合物 Thomas H Epps Iii等 2019-01-09
US20210205505A1 连续纤维增强生物复合医用植入物 Ossio Ltd. 2021-01-19
CN110330944A 天然木材衍生复合相变储能导电材料及其制备方法 同济大学 2019-07-02
表3  部分高价值专利
[1] 中华人民共和国中央人民政府. 工业和信息化部等六部门关于印发加快非粮生物基材料创新发展三年行动方案的通知.[2023-07-10]. https://www.gov.cn/zhengce/zhengceku/2023-01/14/content_5736864.htm.
Central Government of the People’s Republic of China. Notice of the Ministry of Industry and Information Technology and other six departments on printing and distributing the three-year action plan for accelerating the innovation and development of non-food bio-based materials. [2023-07-10]. https://www.gov.cn/zhengce/zhengceku/2023-01/14/content_5736864.htm.
[2] 国家标准化管理委员会. 生物基材料术语、定义和标识: GB/T 39514-2020. [2020-11-19]. https://openstd.samr.gov.cn/bzgk/gb/newGbInfo?hcno=CCDBB7A3F71D753D297A5CA0272A6222.
Standardization Administration of China. Terminology, definition, identification of biobased materials: GB/T 39514-2020. [2020-11-19]. https://openstd.samr.gov.cn/bzgk/gb/newGbInfo?hcno=CCDBB7A3F71D753D297A5CA0272A6222.
[3] 王成, 高倩, 张凌恺, 等. 基于专利分析的生物传感器发展态势研究. 中国生物工程杂志, 2022, 42(9): 124-132.
Wang C, Gao Q, Zhang L K, et al. Development trend of biosensors based on patent analysis. China Biotechnology, 2022, 42(9): 124-132.
[4] 路瑶, 魏贤勇, 宗志敏, 等. 木质素的结构研究与应用. 化学进展, 2013, 25(5): 838-858.
Lu Y, Wei X Y, Zong Z M, et al. Structural investigation and application of lignins. Progress in Chemistry, 2013, 25(5): 838-858.
[5] Chakar F S, Ragauskas A J. Review of current and future softwood kraft lignin process chemistry. Industrial Crops and Products, 2004, 20(2): 131-141.
doi: 10.1016/j.indcrop.2004.04.016
[6] Shen X J, Wen J L, Mei Q Q, et al. Facile fractionation of lignocelluloses by biomass-derived deep eutectic solvent (DES) pretreatment for cellulose enzymatic hydrolysis and lignin valorization. Green Chemistry, 2019, 21(2): 275-283.
doi: 10.1039/C8GC03064B
[7] Zhang X C, Zhu Y D, Yu Y M, et al. Improve performance of soy flour-based adhesive with a lignin-based resin. Polymers, 2017, 9(7): 261.
doi: 10.3390/polym9070261
[8] 郭奇, 许伟, 刘军利. 磷酸法木质素基活性炭的制备及其电化学性能研究. 林产化学与工业, 2022, 42(2): 31-38.
Guo Q, Xu W, Liu J L. Preparation and electrochemical performance of lignin-based activated carbon by phosphoric acid activation. Chemistry and Industry of Forest Products, 2022, 42(2): 31-38.
[9] Yaradoddi J S, Banapurmath N R, Ganachari S V, et al. Bio-based material from fruit waste of orange peel for industrial applications. Journal of Materials Research and Technology, 2022, 17: 3186-3197.
doi: 10.1016/j.jmrt.2021.09.016
[10] Kumar S, Saha A. Utilization of coconut shell biomass residue to develop sustainable biocomposites and characterize the physical, mechanical, thermal, and water absorption properties. Biomass Conversion and Biorefinery, 2022, DOI:10.1007/s13399-022-03293-4.
doi: 10.1007/s13399-022-03293-4
[11] Ji M C, Li J Y, Li F Y, et al. A biodegradable chitosan-based composite film reinforced by ramie fibre and lignin for food packaging. Carbohydrate Polymers, 2022, 281: 119078.
doi: 10.1016/j.carbpol.2021.119078
[12] Papadaki A, Manikas A C, Papazoglou E, et al. Whey protein films reinforced with bacterial cellulose nanowhiskers: improving edible film properties via a circular economy approach. Food Chemistry, 2022, 385: 132604.
doi: 10.1016/j.foodchem.2022.132604
[13] 王永生, 李增俊. 生物基化学纤维发展现状与展望. 生物加工过程, 2019, 17(5): 466-473.
Wang Y S, Li Z J. Development and perspective of bio-based chemical fiber industry. Chinese Journal of Bioprocess Engineering, 2019, 17(5):466-473.
[14] Santos R P O, Rodrigues B V M, Ramires E C, et al. Bio-based materials from the electrospinning of lignocellulosic sisal fibers and recycled PET. Industrial Crops and Products, 2015, 72: 69-76.
doi: 10.1016/j.indcrop.2015.01.024
[15] Zhang S Q, Ye J W, Sun Y, et al. Electrospun fibrous mat based on silver (I) metal-organic frameworks-polylactic acid for bacterial killing and antibiotic-free wound dressing. Chemical Engineering Journal, 2020, 390: 124523.
doi: 10.1016/j.cej.2020.124523
[16] Azimi B, Maleki H, Zavagna L, et al. Bio-based electrospun fibers for wound healing. Journal of Functional Biomaterials, 2020, 11(3): 67.
doi: 10.3390/jfb11030067
[17] Liu S R, Ma L L, Ding X J, et al. Antimicrobial behavior, low-stress mechanical properties, and comfort of knitted fabrics made from poly (hydroxybutyrate-co-hydroxyvalerate)/polylactide acid filaments and cotton yarns. Textile Research Journal, 2022, 92(1-2): 284-295.
doi: 10.1177/00405175211035130
[18] Ma B M, Hou X L, He C J. Preparation of chitosan fibers using aqueous ionic liquid as the solvent. Fibers and Polymers, 2015, 16(12): 2704-2708.
doi: 10.1007/s12221-015-5638-6
[19] Zhu S, Wang M Y, Qiang Z, et al. Multi-functional and highly conductive textiles with ultra-high durability through ‘green’ fabrication process. Chemical Engineering Journal, 2021, 406: 127140.
doi: 10.1016/j.cej.2020.127140
[20] Tang S, Li J, Wang R G, et al. Current trends in bio-based elastomer materials. SusMat, 2022, 2(1): 2-33.
doi: 10.1002/sus2.v2.1
[21] Meng Y, Zhang C W, Gong X Y, et al. A bio-based elastomer from cornstalk pith scaffold and natural rubber complexing with ferric ions: preparation and mechanical properties. Polymer, 2022, 244: 124678.
doi: 10.1016/j.polymer.2022.124678
[22] 吉海军, 乔荷, 王朝, 等. 生物基合成橡胶的研究进展. 材料工程, 2019, 47(12): 1-9.
doi: 10.11868/j.issn.1001-4381.2019.000207
Ji H J, Qiao H, Wang Z, et al. Research progress in bio-based synthetic rubber. Journal of Materials Engineering, 2019, 47(12): 1-9.
doi: 10.11868/j.issn.1001-4381.2019.000207
[23] Lei W W, Zhou X X, Russell T P, et al. High performance bio-based elastomers: energy efficient and sustainable materials for tires. Journal of Materials Chemistry A, 2016, 4(34): 13058-13062.
doi: 10.1039/C6TA05001H
[24] Hu X R, Li Y, Li M Q, et al. Renewable and supertoughened polylactide-based composites: morphology, interfacial compatibilization, and toughening mechanism. Industrial & Engineering Chemistry Research, 2016, 55(34): 9195-9204.
doi: 10.1021/acs.iecr.6b02159
[25] Li P, Wang B, Liu Y Y, et al. Fully bio-based coating from chitosan and phytate for fire-safety and antibacterial cotton fabrics. Carbohydrate Polymers, 2020, 237: 116173.
doi: 10.1016/j.carbpol.2020.116173
[26] 邹功文, 狄志刚, 胡秀东, 等. 生物基绿色涂料的研究进展. 涂料工业, 2018, 48(4): 74-82.
Zou G W, Di Z G, Hu X D, et al. Research progress in bio-based eco-friendly coatings. Paint & Coatings Industry, 2018, 48(4): 74-82.
[27] Patil C K, Rajput S D, Marathe R J, et al. Synthesis of bio-based polyurethane coatings from vegetable oil and dicarboxylic acids. Progress in Organic Coatings, 2017, 106: 87-95.
doi: 10.1016/j.porgcoat.2016.11.024
[28] Dai J Y, Ma S Q, Wu Y G, et al. High bio-based content waterborne UV-curable coatings with excellent adhesion and flexibility. Progress in Organic Coatings, 2015, 87: 197-203.
doi: 10.1016/j.porgcoat.2015.05.030
[29] Hosney H, Nadiem B, Ashour I, et al. Epoxidized vegetable oil and bio-based materials as PVC plasticizer. Journal of Applied Polymer Science, 2018, 135(19/20): 46270.
doi: 10.1002/app.v135.20
[30] Jia P Y, Zhang M, Hu L H, et al. Development of a vegetable oil based plasticizer for preparing flame retardant poly(vinyl chloride) materials. RSC Advances, 2015, 5(93): 76392-76400.
doi: 10.1039/C5RA10509A
[31] Selvaraju G, Abu Bakar N K. Production of a new industrially viable green-activated carbon from Artocarpus integer fruit processing waste and evaluation of its chemical, morphological and adsorption properties. Journal of Cleaner Production, 2017, 141: 989-999.
doi: 10.1016/j.jclepro.2016.09.056
[32] Sykam K, Försth M, Sas G, et al. Phytic acid: a bio-based flame retardant for cotton and wool fabrics. Industrial Crops and Products, 2021, 164: 113349.
doi: 10.1016/j.indcrop.2021.113349
[33] Jagadeesh P, Puttegowda M, Mavinkere R S, et al. Influence of nanofillers on biodegradable composites: a comprehensive review. Polymer Composites, 2021, 42(11): 5691-5711.
doi: 10.1002/pc.v42.11
[34] Fu Q L, Chen Y, Sorieul M. Wood-based flexible electronics. ACS Nano, 2020, 14(3): 3528-3538.
doi: 10.1021/acsnano.9b09817 pmid: 32109046
[35] Naseri N, Poirier J M, Girandon L, et al. 3-Dimensional porous nanocomposite scaffolds based on cellulose nanofibers for cartilage tissue engineering: tailoring of porosity and mechanical performance. RSC Advances, 2016, 6(8): 5999-6007.
doi: 10.1039/C5RA27246G
[36] He Y, Hu Z W, Ren M D, et al. Evaluation of PHBHHx and PHBV/PLA fibers used as medical sutures. Journal of Materials Science: Materials in Medicine, 2014, 25(2): 561-571.
doi: 10.1007/s10856-013-5073-4
[37] Kühne M, Lindemann H, Grune C, et al. Biocompatible sulfated valproic acid-coupled polysaccharide-based nanocarriers with HDAC inhibitory activity. Journal of Controlled Release, 2021, 329: 717-730.
doi: 10.1016/j.jconrel.2020.10.006 pmid: 33031880
[1] 吴晓燕, 陈方. 二氧化碳生物转化技术发展现状与趋势分析[J]. 中国生物工程杂志, 2024, 44(1): 128-141.
[2] 魏珣, 张娟, 江易林, 赵伊琳, 陈菲菲, 安学丽, 吴锁伟, 龙艳, 万向元. 生物农业前沿技术研究进展[J]. 中国生物工程杂志, 2024, 44(1): 41-51.
[3] 姜宇佳, 荆泽华, 冯静, 徐讯. 时空组学技术新进展*[J]. 中国生物工程杂志, 2024, 44(1): 19-31.
[4] 李玉娟, 傅雄飞, 张先恩. 合成生物学发展脉络概述[J]. 中国生物工程杂志, 2024, 44(1): 52-60.
[5] 裘卉青, 杨子杰, 郭放, 詹御涛. 未来生物医药产业发展趋势研究[J]. 中国生物工程杂志, 2024, 44(1): 8-18.
[6] 李秋阳, 孙文涛, 秦磊, 吕波, 李春. 天然产物生物合成与微生物制造的挑战*[J]. 中国生物工程杂志, 2024, 44(1): 72-87.
[7] 武国庆, 薛晓舟, 闵剑, 林海龙. 全球能源低碳转型下生物液体燃料产业现状与展望*[J]. 中国生物工程杂志, 2024, 44(1): 88-97.
[8] 韩祺, 张瀚予. 释放中国生物经济巨大发展潜力[J]. 中国生物工程杂志, 2024, 44(1): 1-7.
[9] 徐显皓, 刘龙, 陈坚. 合成生物学与未来食品*[J]. 中国生物工程杂志, 2024, 44(1): 61-71.
[10] 谷晓丽, 杨秀鹏, 喻丽, 凌志明, 许勇钢. 慢病毒介导的TET2基因稳定敲低SKM-1细胞株的构建及验证*[J]. 中国生物工程杂志, 2023, 43(12): 160-168.
[11] 蔡年桂, 陈欣, 张清源, 底浩楠, 詹小贞, 陈军岩, 陈昊, 颜晓梅. 窥探纳米世界:纳米流式检测技术的研发及单颗粒水平表征应用*[J]. 中国生物工程杂志, 2023, 43(12): 1-13.
[12] 陈玉阳,刘家源,黄子芹,陈禹保,徐文娟,龙峰. 表面等离子体共振生物传感器知识产权的发展态势研究*[J]. 中国生物工程杂志, 2023, 43(11): 116-126.
[13] 卢承蓉,张梦君,郑维爽,陆晓娟,于盛洋,黄艺. 生物基可降解材料PHA提取工艺研究进展*[J]. 中国生物工程杂志, 2023, 43(11): 105-115.
[14] 黄明珠, 沈祺昌, 秦春燕, 徐阳, 魏怡然, 陈雪岚. 原核表达及细胞表面展示脯氨酸羟化酶改性鱼明胶[J]. 中国生物工程杂志, 2023, 43(11): 8-15.
[15] 蒋慧慧, 王强, 饶志明, 张显. 酿酒酵母启动子工程研究进展*[J]. 中国生物工程杂志, 2023, 43(11): 78-91.