Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2024, Vol. 44 Issue (1): 118-127    DOI: 10.13523/j.cb.2307024
综述     
微生物群体感应在废水生物处理中的应用*
王倩1,2,**(),覃溢璇1,孔强1,2,李慧宇1,宗可金1,王颖慧1,荣明慧1
1 山东师范大学地理与环境学院 济南 250358
2 山东师范大学东营研究院 东营 257343
Research Progress of Microbial Quorum Sensing in Wastewater Biological Treatment
Qian WANG1,2,**(),Yixuan QIN1,Qiang KONG1,2,Huiyu LI1,Kejin ZONG1,Yinghui WANG1,Minghui RONG1
1 School of Geography and Environment of Shandong Normal University, Jinan 250358, China
2 Dongying Research Institute of Shandong Normal University, Dongying 257343, China
 全文: PDF(1575 KB)   HTML
摘要:

群体感应(quorum sensing,QS)作为依赖菌群密度调控基因表达的基因调控系统,被称为细胞间的交流语言。QS在许多自然及废水处理工程系统中被发现,对环境修复及废水生物处理资源化起到重要的促进作用。总结细菌三种类型的典型信号分子(酰基高丝氨酸内酯类、寡肽类和呋喃酰硼酸二酯类)介导的QS机理,综述信号分子的添加或猝灭、基因的遗传操作、组学技术这三种研究QS系统功能的技术及并对比分析各种方法的优缺点,探讨QS在工业废水生物处理领域中活性污泥、生物膜及生物脱氮方面的应用。结合目前对QS的跨界通讯在废水处理方面的应用潜力和已知研究内容的局限性,对QS系统介导的细菌-植物、细菌-噬菌体、细菌-真菌跨界通讯机制等方面的研究进行展望,以期为利用QS调控策略强化废水处理效率提供新的思路。

关键词: 废水生物处理细菌群体感应信号分子    
Abstract:

Quorum sensing(QS), known as the language of intercellular communication is a gene regulatory system that relies on colony density. It is found in many natural and wastewater treatment engineering systems and plays an important role in environmental remediation and wastewater biotreatment.At present,there is a lack of systematic summary of the research methods and related applications of QS regulating bacterial function.In this paper,the QS mechanism mediated by three types of typical signal molecules(N-Acyl homoserine 1actones,autoinducing peptides and furanosyl borate diEnvironmental Science & Technologyer)of bacteria was summarized.The three techniques of adding or quenching signal molecules,genetic manipulation of genes,and omics techniques to study the function of the QS system were reviewed,and their advantages and disadvantages were compared and analyzed.The application of QS in activated sludge,biofilm and biological nitrogen removal in the field of industrial wastewater biological treatment was discussed.Finally,combined with the current application potential of QS cross-border communication in wastewater treatment and the limitations of known research contents,some studies on QS system-mediated bacterial-plant,bacterial-phage,bacterial-fungal cross-border communication mechanisms were discussed,in order to provide new ideas for using QS regulation strategies to enhance wastewater treatment efficiency in the future.

Key words: Wastewater biological treatment    Bacteria    Quorum sensing    Signal molecule
收稿日期: 2023-07-17 出版日期: 2024-02-04
ZTFLH:  X703  
基金资助: *山东省自然科学基金(ZR2020YQ41)
通讯作者: ** 电子信箱:qianwang86@sdnu.edu.cn   
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王倩
覃溢璇
孔强
李慧宇
宗可金
王颖慧
荣明慧

引用本文:

王倩, 覃溢璇, 孔强, 李慧宇, 宗可金, 王颖慧, 荣明慧. 微生物群体感应在废水生物处理中的应用*[J]. 中国生物工程杂志, 2024, 44(1): 118-127.

Qian WANG, Yixuan QIN, Qiang KONG, Huiyu LI, Kejin ZONG, Yinghui WANG, Minghui RONG. Research Progress of Microbial Quorum Sensing in Wastewater Biological Treatment. China Biotechnology, 2024, 44(1): 118-127.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2307024        https://manu60.magtech.com.cn/biotech/CN/Y2024/V44/I1/118

图1  AHL分子结构式
图2  典型的AHL-QS系统(A)与AIP-QS系统(B)
图3  哈氏弧菌中AI-1与AI-2介导的QS系统 图中Р表示信号通过磷酸化传递,H和D分别表示组氨酸和天冬氨酸,为信号传递蛋白的磷酸化残基
应用领域 外源添加物名称 外源添加
物类型
QS的促
进(+)
/抑制
(-)
应用效果 参考文献
活性污泥 香草醛(vanillin) QSI - 香草醛减弱QS-AHL系统,延缓或抑制EPS中蛋白(PN)的产生,显著抑制丝状膨胀 [51]
C12-HSL、C14-HSL AHL + 抑制青霉菌菌丝体形成,缓解真菌性污泥膨胀,沉降能力分别提高了6.1%(C12-HSL)和39.7%(C14-HSL) [52]
C6-HSL AHL + 促进AGS快速粒化,提高AGS系统稳定性以及脱氮除磷性能 [55]
AGS中分离的
AHLs上清液
QS菌 + AGS沉降性能优异(SVI10 37.2 mL/g),加速成粒(颗粒完整性系数为4.4%) [56]
生物膜 C6-HSL、3OC12-HSL AHL + 提高BESs电子摄取量(1.3~2.0倍)和反硝化速率(大于1.0倍),加速阴极生物膜的形成和启动 [57]
D-酪氨酸 QSI - 减少22%生物附着量,抑制活性污泥生物膜污染 [58]
Rhodococcus sp. BH4 QQ菌 - 减少MFC阳极微生物EPS的产生,缓解膜污染,维持良好电化学活性(1 924 mW/m2) [59]
AcinetobacterComamonas
Stenotrophomonas
QQ菌 - 大幅缓解AnMBR膜污染,将膜过滤时间延长3.72倍(P≤ 0.05) [60]
酰化酶 QQ酶 - 生物膜的黏附强度至少降低37%,生物膜厚度由1 562 μm减少到1 765 μm [61]
生物脱氮 C12-HSL AHL + 明显强化好氧氨氧化过程,导致亚氮积累 [62]
C12-HSL AHL + 显著增加氧限制自养硝化/反硝化生物膜中的厌氧氨氧化速率(P< 0.05) [63]
C14-HSL、3-oxo-C14-HSL、
C6-HSL、3-oxo-C6-HSL
AHL + 处理16 d后,活性污泥氨氧化率提高了73% [64]
3-oxo-C6-HSL、
C6-HSL、C8-HSL
AHL + 显著提高SBR(P< 0.05)第二阶段运行期间的脱氮率(NRR) [50]
活化剂 + 刺激微生物自分泌AI-2,促进AOB并抑制NOB,造成N O 2 -累积,促进厌氧氨氧化,进而提高脱氮效率 [67]
蛭形轮虫 微型动物 + 分泌AHLs信号分子类似物,触发QS提高活性污泥对COD、氨氮、总磷的去除率 [68]
表1  群体感应在废水生物处理中的应用
[1] Nealson K H, Platt T, Hastings J W. Cellular control of the synthesis and activity of the bacterial luminescent system. Journal of Bacteriology, 1970, 104(1): 313-322.
doi: 10.1128/jb.104.1.313-322.1970 pmid: 5473898
[2] Whiteley M, Diggle S P, Greenberg E P. Progress in and promise of bacterial quorum sensing research. Nature, 2017, 551(7680): 313-320.
doi: 10.1038/nature24624
[3] Welch M, Todd D E, Whitehead N A, et al. N-acyl homoserine lactone binding to the CarR receptor determines quorum-sensing specificity in Erwinia. The EMBO Journal, 2000, 19(4): 631-641.
doi: 10.1093/emboj/19.4.631
[4] Whistler C A, Pierson L S 3rd. Repression of phenazine antibiotic production in Pseudomonas aureofaciens strain 30-84 by RpeA. Journal of Bacteriology, 2003, 185(13): 3718-3725.
doi: 10.1128/JB.185.13.3718-3725.2003 pmid: 12813064
[5] Bodman S B V, Bauer W D, Coplin D L, et al. Quorum sensing in plant-pathogenic bacteria. Annual Review of Phy-topathology, 2003, 41(1): 455-482.
[6] Zhu J, Mekalanos J J. Quorum sensing-dependent biofilms enhance colonization in Vibrio cholerae. Developmental Cell, 2003, 5(4): 647-656.
doi: 10.1016/S1534-5807(03)00295-8
[7] Williams P, Winzer K, Chan W C, et al. Look who’s talking: communication and quorum sensing in the bacterial world. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 2007, 362(1483): 1119-1134.
[8] Zhang Z X, Zheng Y L, Han P, et al. N-acyl-homoserine lactones (AHLs) in intertidal marsh: diversity and potential role in nitrogen cycling. Plant and Soil, 2020, 454(4): 103-119.
doi: 10.1007/s11104-020-04630-0
[9] Panchavinin S, Tobino T, Hara-Yamamura H, et al. Candidates of quorum sensing bacteria in activated sludge associated with N-acyl homoserine lactones. Chemosphere, 2019, 236: 124292.
doi: 10.1016/j.chemosphere.2019.07.023
[10] Ma H J, Wang X Z, Zhang Y, et al. The diversity, distribution and function of N-acyl-homoserine lactone (AHL) in industrial anaerobic granular sludge. Bioresource Technology, 2018, 247: 116-124.
doi: 10.1016/j.biortech.2017.09.043
[11] Wang J F, Ding L L, Li K, et al. Estimation of spatial distribution of quorum sensing signaling in sequencing batch biofilm reactor (SBBR) biofilms. Science of the Total Environment, 2018, 612: 405-414.
doi: 10.1016/j.scitotenv.2017.07.277
[12] Wang J F, Liu Q J, Hu H D, et al. Insight into mature biofilm quorum sensing in full-scale wastewater treatment plants. Chemosphere, 2019, 234: 310-317.
doi: S0045-6535(19)31227-5 pmid: 31228833
[13] Wang N, Gao J, Liu Y, et al. Realizing the role of N-acyl-homoserine lactone-mediated quorum sensing in nitrification and denitrification: a review. Chemosphere, 2021, 274: 129970.
doi: 10.1016/j.chemosphere.2021.129970
[14] Biswa P, Doble M. Production of acylated homoserine lactone by gram-positive bacteria isolated from marine water. FEMS Microbiology Letters, 2013, 343(1): 34-41.
doi: 10.1111/1574-6968.12123 pmid: 23489290
[15] Zhang G S, Zhang F, Ding G, et al. Acyl homoserine lactone-based quorum sensing in a methanogenic archaeon. The ISME Journal, 2012, 6(7): 1336-1344.
doi: 10.1038/ismej.2011.203
[16] Sharif D I, Gallon J, Smith C J, et al. Quorum sensing in Cyanobacteria: N-octanoyl-homoserine lactone release and response, by the epilithic colonial cyanobacterium Gloeothece PCC6909. The ISME Journal, 2008, 2(12): 1171-1182.
doi: 10.1038/ismej.2008.68
[17] Miller M B, Bassler B L. Quorum sensing in bacteria. Annual Review of Microbiology, 2001, 55(1): 165-199.
doi: 10.1146/micro.2001.55.issue-1
[18] Waters C M, Bassler B L. Quorum sensing: cell-to-cell communication in bacteria. Annual Review of Cell and Developmental Biology, 2005, 21: 319-346.
pmid: 16212498
[19] Churchill M E A, Chen L L. Structural basis of acyl-homoserine lactone-dependent signaling. Chemical Reviews, 2011, 111(1): 68-85.
doi: 10.1021/cr1000817 pmid: 21125993
[20] Wang X J, Wang W Q, Li Y, et al. Biofilm activity, ammonia removal and cell growth of the heterotrophic nitrifier, Acinetobacter sp., facilitated by exogenous N-acyl-homoserine lactones. RSC Advances, 2018, 8(54): 30783-30793.
doi: 10.1039/C8RA05545A
[21] Ma H J, Wang X Z, Zhang Y, et al. The diversity, distribution and function of N-acyl-homoserine lactone (AHL) in industrial anaerobic granular sludge. Bioresource Technology, 2018, 247: 116-124.
doi: 10.1016/j.biortech.2017.09.043
[22] Toyofuku M, Nomura N, Fujii T, et al. Quorum sensing regulates denitrification in Pseudomonas aeruginosa PAO1. Journal of Bacteriology, 2007, 189(13): 4969-4972.
doi: 10.1128/JB.00289-07
[23] Cui X Y, Ruan X Y, Yin J, et al. Regulation of las and rhl quorum sensing on aerobic denitrification in Pseudomonas aeruginosa PAO1. Current Microbiology, 2021, 78(2): 659-667.
doi: 10.1007/s00284-020-02338-z
[24] Shiner E K, Rumbaugh K P, Williams S C. InterKingdom signaling: deciphering the language of acyl homoserine lactones. FEMS Microbiology Reviews, 2005, 29(5): 935-947.
pmid: 16219513
[25] Detmers F J M, Lanfermeijer F C, Poolman B. Peptides and ATP binding cassette peptide transporters. Research in Microbiology, 2001, 152(3-4): 245-258.
pmid: 11421272
[26] Schauder S, Bassler B L. The languages of bacteria. Genes & Development, 2001, 15(12): 1468-1480.
doi: 10.1101/gad.899601
[27] Tortosa P, Dubnau D. Competence for transformation: a matter of taste. Current Opinion in Microbiology, 1999, 2(6): 588-592.
pmid: 10607621
[28] Cheng Q, Campbell E A, Naughton A M, et al. The com locus controls genetic transformation in Streptococcus pneumoniae. Molecular Microbiology, 1997, 23(4): 683-692.
pmid: 9157240
[29] Kleerebezem M, Quadri L E N, Kuipers O P, et al. Quorum sensing by peptide pheromones and two-component sig-nal-transduction systems in Gram-positive bacteria. Molecular Microbiology, 1997, 24(5): 895-904.
pmid: 9219998
[30] Xavier K B, Bassler B L. Interference with AI-2-mediated bacterial cell-cell communication. Nature, 2005, 437(7059): 750-753.
doi: 10.1038/nature03960
[31] Miller S T, Xavier K B, Campagna S R, et al. Salmonella typhimurium recognizes a chemically distinct form of the bacterial quorum-sensing signal AI-2. Molecular Cell, 2004, 15(5): 677-687.
doi: 10.1016/j.molcel.2004.07.020
[32] Thompson J A, Oliveira R A, Djukovic A, et al. Manipulation of the quorum sensing signal AI-2 affects the antibi-otic-treated gut microbiota. Cell Reports, 2015, 10(11): 1861-1871.
pmid: 25801025
[33] Chen X, Schauder S, Potier N, et al. Structural identification of a bacterial quorum-sensing signal containing boron. Nature, 2002, 415(6871): 545-549.
doi: 10.1038/415545a
[34] Zhang L, Li S Y, Liu X Z, et al. Sensing of autoinducer-2 by functionally distinct receptors in prokaryotes. Nature Communications, 2020, 11(1): 5371.
doi: 10.1038/s41467-020-19243-5 pmid: 33097715
[35] Pereira C S, Thompson J A, Xavier K B. AI-2-mediated signalling in bacteria. FEMS Microbiology Reviews, 2013, 37(2): 156-181.
doi: 10.1111/j.1574-6976.2012.00345.x pmid: 22712853
[36] Martinelli D, Bunk M, Cadalbert B. Language of bacteria. Wochenbl Papierfabr, 2002, 130(14):973-975.
[37] Song T, Zhang X L, Li J, et al. A review of research progress of heterotrophic nitrification and aerobic denitrification microorganisms (HNADMs). The Science of the Total Environment, 2021, 801: 149319.
doi: 10.1016/j.scitotenv.2021.149319
[38] Grandclément C, Tannières M, Moréra S, et al. Quorum quenching: role in nature and applied developments. FEMS Microbiology Reviews, 2016, 40(1): 86-116.
doi: 10.1093/femsre/fuv038 pmid: 26432822
[39] 肖梦圆, 武瑞赟, 谭春明, 等. 群体感应系统及其抑制剂对细菌生物被膜调控的研究进展. 食品科学, 2020, 41(13): 227-234.
doi: 10.7506/spkx1002-6630-20200109-115
Xiao M Y, Wu R Y, Tan C M, et al. Advances of quorum sensing system and quorum sensing inhibitors regulating bacterial biofilm formation. Food Science, 2020, 41(13): 227-234.
doi: 10.7506/spkx1002-6630-20200109-115
[40] Parsek M R, Val D L, Hanzelka B L, et al. Acyl homoserine-lactone quorum-sensing signal generation. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(8): 4360-4365.
[41] Gao M S, Chen H C, Eberhard A, et al. Effects of AiiA-mediated quorum quenching in Sinorhizobium meliloti on quorum-sensing signals, proteome patterns, and symbiotic interactions. Molecular Plant-microbe Interactions, 2007, 20(7): 843-856.
doi: 10.1094/MPMI-20-7-0843
[42] Nguyen P D T, Mustapha N A, Kadokami K, et al. Quorum sensing between Gram-negative bacteria responsible for methane production in a complex waste sewage sludge consortium. Applied Microbiology and Biotechnology, 2019, 103(3): 1485-1495.
doi: 10.1007/s00253-018-9553-9 pmid: 30554390
[43] Liang Y, Pan Y L, Li Q C, et al. RNA-seq-based transcriptomic analysis of AHL-induced biofilm and pyocyanin inhibition in Pseudomonas aeruginosa by Lactobacillus brevis. International Microbiology, 2022, 25(3): 447-456.
doi: 10.1007/s10123-021-00228-3 pmid: 35066679
[44] Ganin H, Tang X, Meijler M M. Inhibition of Pseudomonas aeruginosa quorum sensing by AI-2 analogs. Bioorganic & Medicinal Chemistry Letters, 2009, 19(14): 3941-3944.
doi: 10.1016/j.bmcl.2009.03.163
[45] Schuster M, Joseph Sexton D, Diggle S P, et al. Acyl-homoserine lactone quorum sensing: from evolution to applica-tion. Annual Review of Microbiology, 2013, 67: 43-63.
doi: 10.1146/annurev-micro-092412-155635 pmid: 23682605
[46] Zhu Z Q, Yang Y, Fang A R, et al. Quorum sensing systems regulate heterotrophic nitrification-aerobic denitrification by changing the activity of nitrogen-cycling enzymes. Environmental Science and Ecotechnology, 2020, 2: 100026.
doi: 10.1016/j.ese.2020.100026
[47] Gao J, Ma A Z, Zhuang X L, et al. An N-acyl homoserine lactone synthase in the ammonia-oxidizing bacterium Nitrosospira multiformis. Applied and Environmental Microbiology, 2014, 80(3): 951-958.
doi: 10.1128/AEM.03361-13
[48] Wang Z B, Liu X L, Ni S Q, et al. Nano zero-valent iron improves anammox activity by promoting the activity of quorum sensing system. Water Research, 2021, 202: 117491.
doi: 10.1016/j.watres.2021.117491
[49] Liu Y, Gao J, Wang N, et al. Diffusible signal factor enhances the saline-alkaline resistance and rhizosphere colonization of Stenotrophomonas rhizophila by coordinating optimal metabolism. Science of the Total Environment, 2022, 834: 155403.
doi: 10.1016/j.scitotenv.2022.155403
[50] Tang X, Guo Y Z, Wu S S, et al. Metabolomics uncovers the regulatory pathway of acyl-homoserine lactones based quorum sensing in anammox consortia. Environmental Science & Technology, 2018, 52(4): 2206-2216.
doi: 10.1021/acs.est.7b05699
[51] Shi H X, Wang J, Liu S Y, et al. New insight into filamentous sludge bulking: potential role of AHL-mediated quorum sensing in deteriorating sludge floc stability and structure. Water Research, 2022, 212: 118096.
doi: 10.1016/j.watres.2022.118096
[52] Feng Z X, Lu X, Chen C L, et al. Transboundary intercellular communications between Penicillium and bacterial communities during sludge bulking: inspirations on quenching fungal dominance. Water Research, 2022, 221: 118829.
doi: 10.1016/j.watres.2022.118829
[53] Mellbye B L, Giguere A T, Bottomley P J, et al. Quorum quenching of nitrobacter winogradskyi suggests that quorum sensing regulates fluxes of nitrogen oxide(s) during nitrification. mBIO, 2016, 7(5): e01753-16.
[54] Wang H, Wu P K, Zheng D, et al. N-acyl-homoserine lactone (AHL)-mediated microalgal-bacterial communication driving Chlorella-activated sludge bacterial biofloc formation. Environmental Science & Technology, 2022, 56(17): 12645-12655.
doi: 10.1021/acs.est.2c00905
[55] Shuai J, Hu X L, Wang B, et al. Response of aerobic sludge to AHL-mediated QS: granulation, simultaneous nitrogen and phosphorus removal performance. Chinese Chemical Letters, 2021, 32(11): 3402-3409.
doi: 10.1016/j.cclet.2021.04.061
[56] Zhang B, Li W, Guo Y, et al. A sustainable strategy for effective regulation of aerobic granulation: augmentation of the signaling molecule content by cultivating AHL-producing strains. Water Research, 2020, 169: 115193.
doi: 10.1016/j.watres.2019.115193
[57] Fang Y L, Deng C S, Chen J, et al. Accelerating the start-up of the cathodic biofilm by adding acyl-homoserine lactone signaling molecules. Bioresource Technology, 2018, 266: 548-554.
doi: S0960-8524(18)31024-1 pmid: 30049528
[58] Xu H J, Liu Y. Reduced microbial attachment by D-amino acid-inhibited AI-2 and EPS production. Water Research, 2011, 45(17): 5796-5804.
doi: 10.1016/j.watres.2011.08.061 pmid: 21924452
[59] Taᶊkan B N, Taᶊkan E. Inhibition of AHL-mediated quorum sensing to control biofilm thickness in microbial fuel cell by using Rhodococcus sp. BH4. Chemosphere, 2021, 285: 131538.
doi: 10.1016/j.chemosphere.2021.131538
[60] Xu B Y, Cho Q A C, Ng T C A, et al. Enriched autoinducer-2 (AI-2)-based quorum quenching consortium in a ceramic anaerobic membrane bioreactor (AnMBR) for biofouling retardation. Water Research, 2022, 214: 118203.
doi: 10.1016/j.watres.2022.118203
[61] Wang Y C, Wang C, Han M F, et al. Reduction of biofilm adhesion strength by adjusting the characteristics of biofilms through enzymatic quorum quenching. Chemosphere, 2022, 288: 132465.
doi: 10.1016/j.chemosphere.2021.132465
[62] Zhang X J, Zhang H, Zhang N, et al. Impacts of exogenous quorum sensing signal molecule-acylated homoserine lactones (AHLs) with different addition modes on Anammox process. Bioresource Technology, 2023, 371: 128614.
doi: 10.1016/j.biortech.2023.128614
[63] De Clippeleir H, Defoirdt T, Vanhaecke L, et al. Long-chain acylhomoserine lactones increase the anoxic ammonium oxidation rate in an OLAND biofilm. Applied Microbiology and Biotechnology, 2011, 90(4): 1511-1519.
doi: 10.1007/s00253-011-3177-7 pmid: 21360147
[64] Gao J, Duan Y, Liu Y, et al. Long- and short-chain AHLs affect AOA and AOB microbial community composition and ammonia oxidation rate in activated sludge. Journal of Environmental Sciences, 2019, 78: 53-62.
doi: S1001-0742(18)31010-6 pmid: 30665656
[65] Shen Q X, Gao J, Liu J, et al. A new acyl-homoserine lactone molecule generated by Nitrobacter winogradskyi. Sci-entific Reports, 2016, 6(1): 22903.
[66] 朱子倩. 群体感应系统调控异养硝化好氧反硝化机制研究. 哈尔滨: 哈尔滨工业大学, 2020.
Zhu Z Q. Mechanism of quorum sensing system regulating heterotrophic nitrification and aerobic denitrification. Harbin: Harbin Institute of Technology, 2020.
[67] Hu H Z, Liu Y R, Luo F, et al. Stable and rapid partial nitrification achieved by boron stimulating autoinducer-2 me-diated quorum sensing at room & low temperature. Chemosphere, 2022, 304: 135327.
doi: 10.1016/j.chemosphere.2022.135327
[68] 丁国际, 张周翀, 何韵, 等. 旋轮虫在污水生物处理中的作用机制初探. 环境科学学报, 2019, 39(10): 3356-3363.
Ding G J, Zhang Z C, He Y, et al. Preliminary study on the function of Philodina sp. in biological wastewater treatment. Acta Scientiae Circumstantiae, 2019, 39(10): 3356-3363.
[69] He C F, Zheng L, Ding J F, et al. Variation in bacterial community structures and functions as indicators of response to the restoration of Suaeda salsa: a case study of the restoration in the Beidaihe coastal wetland. Frontiers in Microbiology, 2022, 13: 783155.
doi: 10.3389/fmicb.2022.783155
[70] 夏蓉, 郑晓璇, 叶茂, 等. 噬菌体对土壤碳氮元素循环转化影响的研究进展. 土壤, 2021, 53(4): 661-671.
Xia R, Zheng X X, Ye M, et al. Advances in effects of bacteriophages on transformation of carbon and nitrogen in soil. Soils, 2021, 53(4): 661-671.
[71] Ji M Z, Liu Z C, Sun K L, et al. Bacteriophages in water pollution control: advantages and limitations. Frontiers of Environmental Science & Engineering, 2020, 15(5): 84.
[72] Feng Z, Lu X, Chen C, et al. Transboundary intercellular communications between Penicillium and bacterial commu-nities during sludge bulking: inspirations on quenching fungal dominance. Water Research, 2022, 221: 118829.
doi: 10.1016/j.watres.2022.118829
[1] 孙舒扬, 吴胜波, 张欣乔, 梁畅畅, 乔建军. 噬菌体与细菌基于群体感应的双向互作*[J]. 中国生物工程杂志, 2024, 44(1): 107-117.
[2] 李雨桐, 崔天琦, 张海林, 于广乐, 栾霁, 王海龙. 肿瘤靶向细菌Escherichia coli Nissle 1917在癌症治疗中的研究进展*[J]. 中国生物工程杂志, 2023, 43(6): 54-68.
[3] 胡秀玲, 熊利洋, 魏云林. 革兰氏阳性菌群体感应系统研究进展[J]. 中国生物工程杂志, 2023, 43(2/3): 165-173.
[4] 马依凡, 孙绘梨, 毛绍名, 栾国栋, 吕雪峰. 进化工程在蓝细菌生物学和生物技术研究中的应用*[J]. 中国生物工程杂志, 2023, 43(11): 92-104.
[5] 张爱娣, 崔金玉, 张亚宁, 毛绍名, 栾国栋, 吕雪峰. 蓝细菌次级代谢产物伪枝藻素研究进展与展望*[J]. 中国生物工程杂志, 2023, 43(10): 85-95.
[6] 熊利洋, 胡秀玲, 魏云林. 耐药菌非抗生素疗法研究进展*[J]. 中国生物工程杂志, 2023, 43(1): 50-58.
[7] 王满满,吴胜波,吴昊,张鹏,张育淼,乔建军,财音青格乐. 多酚干扰细菌群体感应研究进展*[J]. 中国生物工程杂志, 2022, 42(9): 93-104.
[8] 毛露珈,史恩宇,王瀚平,单天贺,王银松,王悦. 细菌外膜囊泡在抗肿瘤治疗方面的研究进展*[J]. 中国生物工程杂志, 2022, 42(5): 100-105.
[9] 李金花,白雨凡,马春兰,季秀玲,魏云林. 噬菌体温度适应性的研究进展*[J]. 中国生物工程杂志, 2022, 42(1/2): 139-145.
[10] 马春兰,李金花,白雨凡,魏云林. 重金属胁迫下的细菌适应性进化研究进展*[J]. 中国生物工程杂志, 2022, 42(1/2): 182-190.
[11] 戢传富,王璐,苟敏,宋文枫,夏子渊,汤岳琴. 黄原胶生物合成及分子调控*[J]. 中国生物工程杂志, 2022, 42(1/2): 46-57.
[12] 袁博鑫,吴昊,闫春晓,路娟娥,魏振平,乔建军,阮海华. 病原细菌效应蛋白靶向宿主细胞核研究进展*[J]. 中国生物工程杂志, 2021, 41(7): 81-90.
[13] 郑义,郭世英,隋凤翔,杨骐羽,卫雅萱,李晓岩. 群体感应系统在合成生物学中的应用*[J]. 中国生物工程杂志, 2021, 41(11): 100-109.
[14] 朱潇静,王芮,张欣欣,靳家鑫,路闻龙,丁大顺,霍翠梅,李青梅,孙爱军,庄国庆. 利用细菌人工染色体技术构建整合F基因的重组MDV疫苗株*[J]. 中国生物工程杂志, 2021, 41(10): 33-41.
[15] 段海荣,魏赛金,黎循航. 铜绿假单胞菌中鼠李糖脂生物合成的研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 43-51.