Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2024, Vol. 44 Issue (2/3): 69-75    DOI: 10.13523/j.cb.2306035
技术与方法     
高效包载酪氨酸羟化酶mRNA外泌体的制备*
樊宇钦1,黎智康1,梁至轩1,赵紫涵1,谢秋玲1,2,**()
1 暨南大学生命科学技术学院 广州 510632
2 基因工程药物国家工程研究中心 广州 510632
Preparation of Exosomes Containing Highly Efficient Encapsulated Tyrosinase Hydroxylase mRNA
FAN Yuqin1,LI Zhikang1,LIANG Zhixuan1,ZHAO Zihan1,XIE Qiuling1,2,**()
1 School of Life Science and Technology, Jinan University, Guangzhou 510632, China
2 National Engineering Research Center of Genetic Medicine, Guangzhou 510632, China
 全文: PDF(794 KB)   HTML
摘要:

目的: 酪氨酸羟化酶(TH)是多巴胺合成的限速酶,其对于帕金森病发生有着重要意义。外泌体是由细胞分泌的直径30~200 nm的微囊泡,被认为是可通过血脑屏障的潜在药物载体。拟利用古菌核糖体蛋白L7Ae和Kt环的结合特性,获得高效包载酪氨酸羟化酶mRNA的外泌体(TH-Kt-Exo),以实现mRNA药物穿越血脑屏障的递送。方法: 通过构建带有Kt环的TH mRNA重组质粒,以及外泌体膜蛋白CD63和L7Ae融合表达的重组质粒pCMV-CD63-L7Ae-His,共转染HEK293F细胞,通过超速离心方法收取细胞分泌的外泌体,通过qPCR检测外泌体中TH mRNA的含量并转染受体细胞。结果: 与单一酪氨酸羟化酶质粒转染得到的外泌体TH-Exo相比,利用该方法获得的外泌体TH-Kt-Exo在TH mRNA的装载水平上有显著提高。此外,该外泌体能够将其装载的mRNA转运至受体细胞中。结论: 通过L7Ae和Kt环的特异性结合,可以有效提高目的mRNA在外泌体中的包载。

关键词: 酪氨酸羟化酶外泌体古菌核糖体蛋白Kt环    
Abstract:

Objective: Tyrosine hydroxylase (TH), the rate-limiting enzyme in dopamine synthesis, plays a major role in the pathogenesis of Parkinson disease. Exosomes, vesicles with a diameter ranging from 30 to 200 nm secreted by cells, are considered potential carriers for drug delivery across the blood-brain barrier. To achieve efficient encapsulation of tyrosine hydroxylase mRNA in exosomes (TH-Kt-Exo), the binding properties of the archaeal ribosomal protein L7Ae and the Kt loop are exploited to enable delivery of mRNA-based therapeutics across the blood-brain barrier. Methods: The method involved constructing a recombinant plasmid containing TH mRNA with the Kt loop and a recombinant plasmid, pCMV-CD63-L7Ae-His, expressing the fusion of the exosomal membrane proteins CD63 and L7Ae. HEK293F cells were co-transfected with these plasmids, and exosomes secreted by the cells were harvested by ultracentrifugation. The content of TH mRNA in the exosomes was detected by qPCR, and the exosomes were then transfected into recipient cells. Results: Compared to TH-Exo obtained by transfection with the single tyrosine hydroxylase plasmid, the proposed method resulted in significantly higher levels of TH RNA encapsulation in exosomes (TH-Kt-Exo). In addition, the exosomes were able to deliver the loaded mRNA to recipient cells. Conclusion: The specific binding between L7Ae and the Kt loop effectively enhances the encapsulation of the target mRNA in exosomes.

Key words: Tyrosine hydroxylase    Exosome    Archaeal ribosomal protein    Kt-turn loop
收稿日期: 2023-06-27 出版日期: 2024-04-03
ZTFLH:  Q814  
基金资助: *广州市科技计划(20212210007)
通讯作者: **电子信箱:txql@jnu.edu.cn   
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
樊宇钦
黎智康
梁至轩
赵紫涵
谢秋玲

引用本文:

樊宇钦, 黎智康, 梁至轩, 赵紫涵, 谢秋玲. 高效包载酪氨酸羟化酶mRNA外泌体的制备*[J]. 中国生物工程杂志, 2024, 44(2/3): 69-75.

FAN Yuqin, LI Zhikang, LIANG Zhixuan, ZHAO Zihan, XIE Qiuling. Preparation of Exosomes Containing Highly Efficient Encapsulated Tyrosinase Hydroxylase mRNA. China Biotechnology, 2024, 44(2/3): 69-75.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2306035        https://manu60.magtech.com.cn/biotech/CN/Y2024/V44/I2/3/69

图2  重组质粒在HEK293F细胞中的瞬时表达 进行n=3的独立重复实验,并确保所有样品分析条件一致
图3  外泌体表征 A:粒径分析 B:透射电镜 C:免疫印迹。Control:未转染细胞外泌体;TH-Exo: pcDNA3.4-TH-Flag-Kt转染细胞外泌体;TH-Kt-Exo:pcDNA3.4hTH-Flag-Kt、pCMV-CD63-L7Ae-His共转染细胞外泌体
图4  外泌体包载TH mRNA检测 进行n=3的独立重复实验,并确保所有样品分析条件一致
图5  外泌体孵育HEK293T细胞后受体细胞中TH蛋白的相对mRNA和蛋白质表达情况 A:TH mRNA水平 B:TH蛋白水平。进行n=3的独立重复实验,并确保所有样品分析条件一致 C:Control 0.1:0.1×107 Exo/106 cell;0.25:0.25×107 Exo/cell;0.5:0.5×107 Exo/cell;1:1×107 Exo/cell
[1] Naghavi M, Global Burden of Disease Self-Harm Collaborators. Global, regional, and national burden of suicide mortality 1990 to 2016: systematic analysis for the Global Burden of Disease Study 2016. BMJ, 2019, 364: l94.
[2] Shulman J M, De Jager P L, Feany M B. Parkinson’s disease: genetics and pathogenesis. Annual Review of Pathology: Mechanisms of Disease, 2011, 6: 193-222.
doi: 10.1146/pathmechdis.2011.6.issue-1
[3] Fahn S. The history of dopamine and levodopa in the treatment of Parkinson’s disease. Movement Disorders, 2008, 23(Suppl 3): S497-S508.
doi: 10.1002/mds.22028
[4] Tekin I, Roskoski R, Carkaci-Salli N, et al. Complex molecular regulation of tyrosine hydroxylase. Journal of Neural Transmission, 2014, 121(12): 1451-1481.
doi: 10.1007/s00702-014-1238-7 pmid: 24866693
[5] Klietz M, Keber U, Carlsson T, et al. L-DOPA-induced dyskinesia is associated with a deficient numerical downregulation of striatal tyrosine hydroxylase mRNA-expressing neurons. Neuroscience, 2016, 331: 120-133.
doi: 10.1016/j.neuroscience.2016.06.017 pmid: 27320210
[6] Shehadeh J, Double K L, Murphy K E, et al. Expression of tyrosine hydroxylase isoforms and phosphorylation at serine 40 in the human nigrostriatal system in Parkinson’s disease. Neurobiology of Disease, 2019, 130: 104524.
doi: 10.1016/j.nbd.2019.104524
[7] Pardridge W M. Drug transport across the blood-brain barrier. Journal of Cerebral Blood Flow and Metabolism, 2012, 32(11): 1959-1972.
doi: 10.1038/jcbfm.2012.126 pmid: 22929442
[8] Dong X W. Current strategies for brain drug delivery. Theranostics, 2018, 8(6): 1481-1493.
doi: 10.7150/thno.21254 pmid: 29556336
[9] Silva G A. Nanotechnology applications and approaches for neuroregeneration and drug delivery to the central nervous system. Annals of the New York Academy of Sciences, 2010, 1199: 221-230.
[10] Peng Q, Zhang S, Yang Q, et al. Preformed albumin corona, a protective coating for nanoparticles based drug delivery system. Biomaterials, 2013, 34(33): 8521-8530.
doi: 10.1016/j.biomaterials.2013.07.102 pmid: 23932500
[11] Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends. The Journal of Cell Biology, 2013, 200(4): 373-383.
doi: 10.1083/jcb.201211138
[12] Pathan M, Fonseka P, Chitti S V, et al. Vesiclepedia 2019: a compendium of RNA, proteins, lipids and metabolites in extracellular vesicles. Nucleic Acids Research, 2019, 47(D1): D516-D519.
[13] Théry C. Exosomes: secreted vesicles and intercellular communications. F1000 Biology Reports, 2011, 3: 15.
doi: 10.3410/B3-15 pmid: 21876726
[14] Lai R C, Yeo R W Y, Tan K H, et al. Exosomes for drug delivery:a novel application for the mesenchymal stem cell. Biotechnology Advances, 2013, 31(5): 543-551.
doi: 10.1016/j.biotechadv.2012.08.008
[15] Skog J, Würdinger T, van Rijn S, et al. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nature Cell Biology, 2008, 10(12): 1470-1476.
doi: 10.1038/ncb1800 pmid: 19011622
[16] Tan A, Rajadas J, Seifalian A M. Exosomes as nano-theranostic delivery platforms for gene therapy. Advanced Drug Delivery Reviews, 2013, 65(3): 357-367.
doi: 10.1016/j.addr.2012.06.014 pmid: 22820532
[17] Ha D, Yang N N, Nadithe V. Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: current perspectives and future challenges. Acta Pharmaceutica Sinica B, 2016, 6(4): 287-296.
doi: 10.1016/j.apsb.2016.02.001 pmid: 27471669
[18] Haney M J, Klyachko N L, Zhao Y L, et al. Exosomes as drug delivery vehicles for Parkinson’s disease therapy. Journal of Controlled Release: Official Journal of the Controlled Release Society, 2015, 207: 18-30.
doi: 10.1016/j.jconrel.2015.03.033
[19] Alvarez-Erviti L, Seow Y, Yin H F, et al. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nature Biotechnology, 2011, 29(4): 341-345.
doi: 10.1038/nbt.1807 pmid: 21423189
[20] Wahlgren J, De L Karlson T, Brisslert M, et al. Plasma exosomes can deliver exogenous short interfering RNA to monocytes and lymphocytes. Nucleic Acids Research, 2012, 40(17): e130.
[21] Hood J L, Scott M J, Wickline S A. Maximizing exosome colloidal stability following electroporation. Analytical Biochemistry, 2014, 448: 41-49.
doi: 10.1016/j.ab.2013.12.001 pmid: 24333249
[22] Kuhn J F, Tran E J, Maxwell E S. Archaeal ribosomal protein L7 is a functional homolog of the eukaryotic 15.5kD/Snu13p snoRNP core protein. Nucleic Acids Research, 2002, 30(4): 931-941.
pmid: 11842104
[23] Omer A D, Ziesche S, Ebhardt H, et al. In vitro reconstitution and activity of a C/D box methylation guide ribonucleoprotein complex. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(8): 5289-5294.
[24] Saito H, Kobayashi T, Hara T, et al. Synthetic translational regulation by an L7Ae-kink-turn RNP switch. Nature Chemical Biology, 2010, 6(1): 71-78.
doi: 10.1038/nchembio.273 pmid: 20016495
[25] Hornykiewicz O. A brief history of levodopa. Journal of Neurology, 2010, 257(2): 249-252.
doi: 10.1007/s00415-010-5741-y
[26] Block G, Liss C, Reines S, et al. Comparison of immediate-release and controlled release carbidopa/levodopa in Parkinson’s disease. A multicenter 5-year study. The CR First Study Group. European Neurology, 1997, 37(1): 23-27.
pmid: 9018028
[27] Wolff J A, Malone R W, Williams P, et al. Direct gene transfer into mouse muscle in vivo. Science, 1990, 247(4949Pt 1): 1465-1468.
doi: 10.1126/science.1690918
[28] Van Lint S, Renmans D, Broos K, et al. The ReNAissanCe of mRNA-based cancer therapy. Expert Review of Vaccines, 2015, 14(2): 235-251.
doi: 10.1586/14760584.2015.957685 pmid: 25263094
[29] Kaczmarek J C, Kowalski P S, Anderson D G. Advances in the delivery of RNA therapeutics: from concept to clinical reality. Genome Medicine, 2017, 9(1): 60.
[30] Davis M E. The first targeted delivery of siRNA in humans via a self-assembling, cyclodextrin polymer-based nanoparticle: from concept to clinic. Molecular Pharmaceutics, 2009, 6(3): 659-668.
doi: 10.1021/mp900015y pmid: 19267452
[31] Chen S Y, Sun F T, Qian H, et al. Preconditioning and engineering strategies for improving the efficacy of mesenchymal stem cell-derived exosomes in cell-free therapy. Stem Cells International, 2022, 2022: 1779346.
[32] Sun D M, Zhuang X Y, Xiang X Y, et al. A novel nanoparticle drug delivery system: the anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes. Molecular Therapy, 2010, 18(9): 1606-1614.
doi: 10.1038/mt.2010.105 pmid: 20571541
[33] Shtam T A, Kovalev R A, Varfolomeeva E Y, et al. Exosomes are natural carriers of exogenous siRNA to human cells in vitro. Cell Communication and Signaling, 2013, 11: 88.
doi: 10.1186/1478-811X-11-88
[34] Cheng J, Sun Y X, Ma Y, et al. Engineering of MSC-derived exosomes: a promising cell-free therapy for osteoarthritis. Membranes, 2022, 12(8): 739.
[35] Bryniarski K, Ptak W, Jayakumar A, et al. Antigen-specific, antibody-coated, exosome-like nanovesicles deliver suppressor T-cell microRNA-150 to effector T cells to inhibit contact sensitivity. Journal of Allergy and Clinical Immunology, 2013, 132(1): 170-181.e9.
doi: 10.1016/j.jaci.2013.04.048
[36] Ohno S I, Takanashi M, Sudo K, et al. Systemically injected exosomes targeted to EGFR deliver antitumor microRNA to breast cancer cells. Molecular Therapy, 2013, 21(1): 185-191.
doi: 10.1038/mt.2012.180
[37] Huang C C, Kang M Y, Lu Y, et al. Functionally engineered extracellular vesicles improve bone regeneration. Acta Biomaterialia, 2020, 109: 182-194.
doi: 10.1016/j.actbio.2020.04.017
[38] Wang J H, Forterre A V, Zhao J J, et al. Anti-HER2 scFv-directed extracellular vesicle-mediated mRNA-based gene delivery inhibits growth of HER2-positive human breast tumor xenografts by prodrug activation. Molecular Cancer Therapeutics, 2018, 17(5): 1133-1142.
doi: 10.1158/1535-7163.MCT-17-0827
[39] Liu W, Yu M Y, Chen F, et al. A novel delivery nanobiotechnology: engineered miR-181b exosomes improved osteointegration by regulating macrophage polarization. Journal of Nanobiotechnology, 2021, 19(1): 269.
[40] Tao S C, Yuan T, Zhang Y L, et al. Exosomes derived from miR-140-5p-overexpressing human synovial mesenchymal stem cells enhance cartilage tissue regeneration and prevent osteoarthritis of the knee in a rat model. Theranostics, 2017, 7(1): 180-195.
doi: 10.7150/thno.17133
[1] 郝东霞, 田梦园, 刘洋, 李星, 张媛. 乳外泌体的基本性质及其应用*[J]. 中国生物工程杂志, 2023, 43(2/3): 26-42.
[2] 项建, 叶邦策, 尹斌成. 功能化外泌体重编程免疫细胞与肿瘤细胞之间靶向识别*[J]. 中国生物工程杂志, 2023, 43(10): 1-9.
[3] 王璐,陈梦丽,何芳,项建,尹斌成,叶邦策. 工程化外泌体介导巨噬细胞清除肿瘤外泌体*[J]. 中国生物工程杂志, 2022, 42(6): 1-11.
[4] 毕煦昆,郭成龙,赵建栋,任行全,柴威涛. 骨髓间充质干细胞来源外泌体及其相关信号通路在激素性股骨头坏死中作用的研究进展*[J]. 中国生物工程杂志, 2022, 42(10): 70-79.
[5] 王宇轩,陈婷,张永亮. MiR-148生物学功能研究进展*[J]. 中国生物工程杂志, 2021, 41(7): 74-80.
[6] 李开秀,司维. 间充质干细胞来源的外泌体治疗炎症性肠病研究进展*[J]. 中国生物工程杂志, 2021, 41(7): 66-73.
[7] 吕慧中,赵晨辰,朱链,许娜. 外泌体靶向递药在肿瘤治疗中的进展[J]. 中国生物工程杂志, 2021, 41(5): 79-86.
[8] 邱金戈,刘德武,孙宝丽,李耀坤,郭勇庆,邓铭,柳广斌. 动物外泌体分离方法的研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 36-42.
[9] 吴忧,辛林. 新的药物传递系统:外泌体作为药物载体递送*[J]. 中国生物工程杂志, 2020, 40(9): 28-35.
[10] 毛慧,吕玉华,朱丽慧,林月霞,廖荣荣. 外泌体在病毒感染诊断和治疗中的作用研究 *[J]. 中国生物工程杂志, 2020, 40(3): 104-110.
[11] 吴佳韩,江霖,陈婷,孙加节,张永亮,习欠云. 脂肪组织外泌体与机体其他组织互作研究进展 *[J]. 中国生物工程杂志, 2020, 40(3): 111-116.
[12] 杭海英,刘春春,任丹丹. 流式细胞术的发展、应用及前景 *[J]. 中国生物工程杂志, 2019, 39(9): 68-83.
[13] 刘艳,戴鹏,朱运峰. 外泌体作为肿瘤标志物的研究进展 *[J]. 中国生物工程杂志, 2019, 39(8): 74-79.
[14] 刘艳,戴鹏,朱运峰. 外泌体与自噬体相互关系研究进展 *[J]. 中国生物工程杂志, 2019, 39(6): 78-83.
[15] 元小宁, 朱运峰. 外泌体(Exosome)及其在肿瘤调控中的作用[J]. 中国生物工程杂志, 2013, 33(8): 111-117.